Skip to main content

Advertisement

Log in

Shape memory alloys: Properties and biomedical applications

  • Overview
  • Smart Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Shape memory alloys provide new insights for the design of biomaterials in bioengineering for the design of artificial organs and advanced surgical instruments, since they have specific characteristics and unusual properties. This article will examine (a) the four properties of shape memory alloys, (b) medical applications with high potential for improving the present and future quality of life, and (c) concerns regarding the biocom-patibility properties of nickel-titanium alloys. In particular, the long-term challenges of using shape memory alloys will be discussed, regarding corrosion and potential leakage of elements and ions that could be toxic to cells, tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.B. Greninger and V.G. Mooradian, Trans. AIME, 128 (1938), pp. 337–341.

    Google Scholar 

  2. W.J. Buehler and R.C. Wiley, U.S. patent 3,174,851 (1965).

  3. C.A. Heisterkamp, W.J. Buehler, and F.E. Wang, (Paper presented at the 8th Int. Conf. on Medical and Biomedical Engineering, Chicago, IL 1969).

  4. W.J. Buehler and F.E. Wang, (Paper presented at the Ninth Navy Science Symposium, Washington, D.C., 1966).

  5. G.B. Kauffman and I. Mayo, Invention and Technology, Fall (1993), pp. 18–23.

  6. G.F. Andreasen and T.B. Hilleman, J. Am. Dent. Assoc., 82 (1971), pp. 1373–1375.

    CAS  Google Scholar 

  7. G.F. Andreasen and R.D. Barrett, Angle Orthod., 42 (1972), pp. 172–177.

    CAS  Google Scholar 

  8. G.F. Andreasen and R.F. Morrow, Am. J. Orthod., 73 (1978), pp. 142–151.

    Article  CAS  Google Scholar 

  9. L.M. Schetky and R.B. Sims, Proc. ICOMAT79 (Cambridge, MA: MIT Press, 1979), pp. 693–698.

    Google Scholar 

  10. R. Kousbroek, Metal and Ceramic Biomaterials, vol. 2, ed. P. Ducheyne and G.W. Hastings (Boca Raton, FL: CRC Press, 1984), pp. 63–90.

    Google Scholar 

  11. H.J. Wagner and C.M. Jackson, J. Mat. Eng., 70 (1969), pp. 28–31.

    Google Scholar 

  12. T.W. Duerig and K.N. Melton, Shape Memory Alloys 1986 (Guilin, China: China Academic Publishers, 1986), pp. 397–404.

    Google Scholar 

  13. S. Miyazaky and K. Otsuka, I. S. I. J. Internat., 29 (1989), pp. 353–377.

    Google Scholar 

  14. W.V. Moorleghem, Matériaux et Techniques, 6–7 (1993), pp. 87–91.

    Google Scholar 

  15. C.M. Jackson, H.J. Wagner, and R.J. Wasilesky, 55-Nitinol—The Alloy with a Memory: Its Physical Metallurgy, Properties and Applications, NASA Spec. Pub. 5110 (1972).

  16. G. Guenin and P.F. Gobin, Matériaux et Techniques, Oct./Nov. (1980), pp. 350–364.

  17. P. Rey, Colloque Matériaux Biomédicaux et Handicaps (Proceedings, University of Le Mans, France 1987), p. 199.

  18. S. Miyazaki et al., J. de Physique, C4, supplément au numéro 12 (1982), pp. 255–260.

  19. J. Haasters, G. Bensmann, and T. Baumgart, Current Concepts of Internal Fixation of Fractures, ed. H.K. Uhthoff (Berlin, Germany: Springer-Verlag, 1980), pp. 128–135.

    Google Scholar 

  20. V. Brailovski and F. Trochu, Biomed. Mater. Eng., 6 (1996), pp. 291–298.

    CAS  Google Scholar 

  21. F. Baumgart, G. Bensmann, and J. Hartwig, Tech. Mitt. Krupp - Forsc. Ber., 35 (1977), pp. 157–171.

    Google Scholar 

  22. F. Pawels, Traduction de: Gesamelte Abhandlungen zur Funktionellen Anatomie des Bewegengsapparates, ed. P.G. Maquet (Berlin, Germany: Springer-Verlag, 1979), pp. 131–178.

    Google Scholar 

  23. P.J. Yang et al., in Ref. 12, pp. 438–443.

    Google Scholar 

  24. K.R. Dai et al., in Ref. 12, pp. 430–432.

    Google Scholar 

  25. J. Haasters, G.V. Salis-Solio, and G. Bensmann, Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig et al. (London, England: Butterworth-Heineman, 1990), pp. 426–444.

    Google Scholar 

  26. J. Haasters, J. Becker, and G. Bensmann, Praxis, 5 (1984), pp. 409–418.

    Google Scholar 

  27. D.L. Zhao et al., Shape Memory Alloy 86, in Ref. 12(, pp. 433–437.

    Google Scholar 

  28. M.A. Schmerling et al., J. Biomed. Mater. Res., 10 (1976), pp. 879–892.

    Article  CAS  Google Scholar 

  29. Y. Sekiguchi, Shape Memory Alloys, ed. H. Funakabo (Amsterdam: Gordon and Breach Science Publishers, 1987), pp. 226–269.

    Google Scholar 

  30. N. Poddevin and R. Guidoin, Polymers & Polymer Composite, 3 (1995), pp. 79–97.

    Google Scholar 

  31. N. Hagemeister, L’H. Yahia, and T. Lours, J. de Physique IV, coll. C2, suppl. J. de Physique III, 5 (1995), pp. 403–408.

  32. N. Hagemeister et al., First Intern. Conf. on Shape Memory and Superelastic Technologies (Santa Clara, CA: The International Organization on Shape Memory and Superelastic Technologies, 1994), pp. 395–400.

    Google Scholar 

  33. N. Hagemeister et al., J. de Physique IV, coll. C8, suppl. J. de Physique III, 5 (1995), pp. 1223–1228.

  34. C.J. Burstone, Current Concepts and Techniques, vol. 2, ed. T.M. Graber and C.V. Swain (St. Louis, MO: Mosby. 1985), pp. 23–38.

    Google Scholar 

  35. S. Civjan, E.F. Huget, and L.B. De Simon, J. Dent. Res., 54 (1975), pp. 89–96.

    CAS  Google Scholar 

  36. G.F. Andreasen and R.D. Barrett, Amer. J. Orthodont., 63 (1973), pp. 462–470.

    Article  CAS  Google Scholar 

  37. R. Sachdeva and S. Miyazaki, Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig et al. (Stoneham, MA: Butterworth-Heineman, 1990), pp. 452–469.

    Google Scholar 

  38. R. Kousbroek et al., Biomaterials 1980, ed. G.D. Winter, D.F. Gibbons, and H. Plenk (London: John Wiley and Sons Ltd., 1980), pp. 767–772.

    Google Scholar 

  39. S. Fukuyo et al., Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig et al. (Amsterdam: Butterworth-Heineman, 1990), pp. 470–476.

    Google Scholar 

  40. Y. Sugita et al., Trans. Amer. Soc. Art. Intern. Organs, 32 (1986), pp. 30–34.

    CAS  Google Scholar 

  41. T. Oku et al., Trans. Amer. Soc. Art. Intern. Organs, 14 (1988), pp. 399–403.

    Google Scholar 

  42. J.C. Palmaz, Am. J. Radiology, 150 (1988), pp. 1263–1269.

    CAS  Google Scholar 

  43. P.W. Serruys et al., J. Amer. Coll. Cardiol., 17 (1991), pp. 143–154B.

    Article  Google Scholar 

  44. G.J. Becker, Circulation, 83 (1991), pp. 122–236.

    Google Scholar 

  45. R. Tominaga et al., Amer. Heart J., 123 (1992), pp. 21–27.

    Article  CAS  Google Scholar 

  46. M.T. Rothman and S.W. Davies, British Heart J., 67 (1992), pp. 425–429.

    CAS  Google Scholar 

  47. J.C. Palmaz, Amer. J. Radiol., 160 (1993), pp. 613–618.

    CAS  Google Scholar 

  48. S.V. Lossef et al., J. Vasc. Interv. Radiol., 5 (1994), PP. 341–349.

    CAS  Google Scholar 

  49. F. Flueckiger et al., J. Vasc. Interv. Radiol., 5 (1994), pp. 745–750.

    CAS  Google Scholar 

  50. K.A. Hausegger et al., Radiology, 190 (1994), pp. 199–202.

    CAS  Google Scholar 

  51. F.J. Veith, J. Vasc, Surg., 20 (1994), pp. 855–860.

    CAS  Google Scholar 

  52. M.L. Marin et al., J. Vasc. Surg., 21 (1995), pp. 595–604.

    Article  CAS  Google Scholar 

  53. K.H. Mak et al., J. Am. Coll. Cardiol., 27 (1996), pp. 494–503.

    Article  CAS  Google Scholar 

  54. R. Guidoin et al., J. Endovasc. Ther., 7 (2000), pp. 105–122.

    Article  CAS  Google Scholar 

  55. J. Homans, Surg. Gynecol. Obstet., 79 (1994), pp. 70–82.

    Google Scholar 

  56. M. Simon et al., Radiology, 125 (1977), pp. 89–94.

    Google Scholar 

  57. M.R. Prince et al., Invest. Radiol., 23 (1988), pp. 294–300.

    Article  CAS  Google Scholar 

  58. N. Netsu, T. Iwabuchi, and T. Honma, Bull. Res. Drest. Min. Dress. Met., Joko Ku Univ., 34 (1978), pp. 67–73.

    CAS  Google Scholar 

  59. P.N. Sawyer et al., Trans. Amer. Soc. Aftif. Int. Organs, 17 (1971), pp. 470–473.

    CAS  Google Scholar 

  60. P. Xue, F. Yunyue, and Y. Danhua, Shape Memory Alloy ’86, in Ref. 12(, pp. 444–446.

    Google Scholar 

  61. J.P. O’Leary, J.E. Nicholson, and R.F. Gattuma, Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig et al. (Amsterdam: Butterworth-Heineman, 1990), pp. 477–482.

    Google Scholar 

  62. S.M. Motzkin et al., Proc. 4th New England Bioengineering Conference (New Haven, Conn.: Yale University Press, 1976), pp. 301–308.

    Google Scholar 

  63. L.S. Castleman et al., J. Biomed. Mater. Res., 16 (1976), pp. 695–731.

    Article  Google Scholar 

  64. Y. Shibi Lu, Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig et al. (Amsterdam: Butterworth-Heineman, 1990), pp. 445–451.

    Google Scholar 

  65. L.S. Castleman and S.M. Motzkin, Biocompatibility of Clinical Implant Materials, ed. D.F. Williams (Boca Raton, FL: CRC Press, 1981), pp. 129–154.

    Google Scholar 

  66. T. Norseth and M. Piscator, Handbook on the Metal Toxicology, ed. L. Friberg, G.F. Nordberg, and V.B. Vouk (Amsterdam: Elsevier/North Holland Biomedical Press, 1979), pp. 541–553.

    Google Scholar 

  67. P. Camner et al., Nickel in the Human Environment, ed. F.W. Sunderman (Lyon, France: Int. Agency for Research on Cancer, 1984), pp. 267–276.

    Google Scholar 

  68. Nickel (Washington, D.C.: National Research Council, Division of Medical Sciences, 1975), pp. 97–128.

  69. W.Z. Friend, Corrosion of Nickel and Nickel-Based Alloys (New York: John Wiley & Sons, 1980), pp. 32–94.

    Google Scholar 

  70. D.H.K. Lee, Metallic Contaminants and Human Health New York: (Academic Press, 1972), pp. 149–152.

    Google Scholar 

  71. M. Anke et al., Nickel in the Human Environment, ed. F.W. Sunderman (Lyon, France: Int. Agency for Research on Cancer, 1984), pp. 339–366.

    Google Scholar 

  72. K.S. Kasprzak, Genotoxic and Carcinogenic Metals: Environmental and Occupational Occurrence and Exposure, Advances in Modern Environmental Toxicology Vol. XI, ed. L. Fishbein, A. Furst, and M.A. Mehlman (Princeton, N.J.: Princeton Scientific Publishing Co., 1987), pp. 145–183.

    Google Scholar 

  73. E.J. Bernacki, G.E. Parsons, and F.W. Saundermann, Ann. Clin. Lab. Sci., 8 (1978), pp. 190–197.

    CAS  Google Scholar 

  74. L. Kreyberg, Brit. J. Ind. Med., 35 (1978), pp. 109–115.

    CAS  Google Scholar 

  75. J.P. Randin, J. Biomed. Mater. Res., 22 (1988), pp. 649–666.

    Article  CAS  Google Scholar 

  76. S.L. Husain, Brit. Med. J., 2 (1977), pp. 998–1003.

    CAS  Google Scholar 

  77. A.A. Fisher, Cutis, 19 (1977), pp. 285–295.

    CAS  Google Scholar 

  78. J.P.W. Gilman, Cancer Res., 22 (1962), pp. 158–162.

    CAS  Google Scholar 

  79. T.J. Lau, R.L. Hackett, and F.W. Sunderman, Cancer Res., 32 (1972), pp. 2253–2258.

    CAS  Google Scholar 

  80. A. Furst, Adv. Exp. Med. Biol., 91 (1977), pp. 1–29.

    CAS  Google Scholar 

  81. A. Gaechter et al., J. Bone Jt. Surg., 59 (1977), pp. 622–631.

    CAS  Google Scholar 

  82. G.F. Nordberg and O. Andersen, Environ. Health Perspect., 40 (1981), pp. 65–81.

    Article  CAS  Google Scholar 

  83. A. Furst and S.B. Radding, J. Environ. Sci. Health, C2 (1984), pp. 103–133.

    CAS  Google Scholar 

  84. M. Gerin et al., Nickel in the Human Environment, ed. F.W. Sunderman (Lyon, France: Int. Agency for Research on Cancer, 1984), pp. 105–116.

    Google Scholar 

  85. J. Dunnick, C.W. Jameson, and J.M. Benson, Progress in Nickel Toxicology, ed. S.S. Brown and F.W. Sunderman (Oxford, U.K.: Blackwell Scientific Publications, 1985), pp. 49–52.

    Google Scholar 

  86. K.S. Kasprzak, Proc. Am. Assoc. Cancer Res., 28 (1987), p. 148.

    Google Scholar 

  87. G.S. Carvalho et al., Clinical Implant Materials, ed. G. Heimke, U. Soltesz, and A.J.C. Lee (New York: Elsevier Science Publishers, 1990), pp. 13–18.

    Google Scholar 

  88. F. Pott et al., Nickel and Human Health. Current Perspectives, ed. E. Nieboer and J.O. Nriagu (New York, NY: John Wiley & Sons Inc., 1992), pp. 491–502.

    Google Scholar 

  89. M.A. Cooke and R.A. Cooke, Nickel and the Skin: Immunology and Toxicology, ed. H.I. Maibach and T. Menné (Boca Raton, FL: CRC Press, 1989), pp. 35–44.

    Google Scholar 

  90. B. Sarkar, Coordination Chemistry, ed. J.P. Laurent (Tarrytown, NY: Pergamon Press, 1980), pp. 171–185.

    Google Scholar 

  91. C. Onkelinx, Nickel in the Human Environment, ed. J.O. Nriagu (New York, NY: Wiley-Interscience, 1980), pp. 526–545.

    Google Scholar 

  92. O.B. Christensen and V. Lagesson, Ann. Clin. Lab. Sci., 11 (1981), pp. 119–125.

    CAS  Google Scholar 

  93. B. Sarkar, Nickel in the Human Environment, ed. F.W. Sunderman (Lyon, France: Int. Agency for Research on Cancer, 1984), pp. 367–384.

    Google Scholar 

  94. J. Swatek-Kozlowska, Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment, ed. N. Hadjiliadis and H. Kozlowski (Brussels, Belgium: NATO Advanced Study Institute, 1996), pp. 48–49.

    Google Scholar 

  95. H. Kozlowski, Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment, ed. N. Hadjiliadis (Brussels, Belgium: NATO Advanced Study Institute, 1996), pp. 549–558.

    Google Scholar 

  96. W. Bal and K.S. Kasprzak, Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment, ed. N. Hadjiliadis and H. Kozlowski (Brussels, Belgium: NATO Advanced Study Institute, 1996), pp. 52–53.

    Google Scholar 

  97. K.S. Kasprzak, Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment, ed. N. Hadjiliadis (Brussels, Belgium: NATO Advanced Study Institute, 1996), pp. 93–106.

    Google Scholar 

  98. S.A. Brown and M.B. Mayor, J. Biomed. Mat. Res., 12 (1978), pp. 67–78.

    Article  CAS  Google Scholar 

  99. M. Berlin and C. Nordman, Handbook on the Metal Toxicology, ed. L. Friberg, G.F. Nordberg, and V.B. Vouk (Amsterdam: Elsevier/North Holland Biomedical Press, 1979), pp. 627–636.

    Google Scholar 

  100. S. Daum et al., Proc. R. Soc. Med., 70 (1977), pp. 31–44.

    CAS  Google Scholar 

  101. W.R. Parker, Proc. R. Soc. Med., 70 (1977), pp. 289–293.

    Google Scholar 

  102. G.B. Andersson et al., J. Bone Jt. Surg., 60 (1978), pp. 31–39.

    CAS  Google Scholar 

  103. D.S. Gordon and G.A.S. Blair, Br. Med. J., 2 (1974), pp. 478–482.

    Article  CAS  Google Scholar 

  104. J.B. Park, Biomaterials Science and Engineering (New York: Plenum Press, 1987), pp. 193–234.

    Google Scholar 

  105. M. Assad et al., Proc. First Intern. Conf. on Shape Memory and Superelastic Technologies, in Ret. 32(, pp. 215–220.

    Google Scholar 

  106. J.W. Harrison et al., Clin. Orthop., 116 (1976), pp. 253–258.

    Google Scholar 

  107. D.E. Cutright et al., Oral Surg. Oral Med. Oral Pathol., 35 (1973), pp. 578–586.

    Article  CAS  Google Scholar 

  108. F.X. Gil, J.M. Manero, and J.A. Planell, J. Mat. Sci.: Mat. in Med., 7 (1996), pp. 403–406.

    Article  CAS  Google Scholar 

  109. M. Webley, A. Kates, and M.L. Snaith, Ann. Rheum. Dis., 37 (1978), pp. 373–379.

    Article  CAS  Google Scholar 

  110. M.G. Fontana and N.D. Greene, Corrosion Engineering (New York: McGraw-Hill Book Co., 1967).

    Google Scholar 

  111. M.G. Fontana and N.D. Greene, Corrosion Engineering (New York: McGraw-Hill Book Co., 1978).

    Google Scholar 

  112. R.J. Gray, Metallography in Failure Analysis, ed. J.L. McCall and P.M. French (New York: Plenum Press, 1977), pp. 231–256.

    Google Scholar 

  113. Y. Oshida, R. Sachdeva, and S. Myazaky, Biomed. Mat. Eng., 2 (1992), pp. 51–69.

    CAS  Google Scholar 

  114. B. Schwaninger, N.K. Sarkar, and B.E. Foster, Am. J. Orthod., 82 (1982), pp. 45–49.

    Article  CAS  Google Scholar 

  115. K. Speck and A. Fraker, J. Dent. Res., 59 (1980), pp. 1590–1595.

    CAS  Google Scholar 

  116. H. Kimura and T. Sohmura, Dent. Mater. App., 6 (1987), pp. 73–79.

    Google Scholar 

  117. Y. Nakayama et al., Biomaterials, 10 (1989), pp. 420–424.

    Article  CAS  Google Scholar 

  118. G. Rondelli, B. Vicentini, and A. Cigada, Corr. Sc., 30(8/9) (1990), pp. 805–812.

    Article  CAS  Google Scholar 

  119. M.A. Barbosa, Biomaterials Degradation, Fundamental aspects and Related Clinical Phenomena, ed. M.A. Barbosa (New York, NY: Elsevier Science Publishers, 1991), pp. 227–257.

    Google Scholar 

  120. B.J. Edwards, Environmental Degradation of Engineering Materials, ed. M.R. Louthan, R.P. McNitt, and R.D. Sisson (University Park, Pa.,: the Pennsylvania State University Press, 1987), pp. 461–484.

    Google Scholar 

  121. M. Pourbaix, Atlas d’équilibres électrochimiques (Paris: Gauthier-Villars, 1963), pp. 330–342.

    Google Scholar 

  122. M. Pourbaix, Lectures on Electrochemical Corrosion (New York: Plenum Press, 1973).

    Google Scholar 

  123. C.D. Hall and N. Hackermann, J. Electrochem. Soc., 57 (1953), pp. 262–268.

    CAS  Google Scholar 

  124. S.G. Steinemann, Evaluation of Biomaterials, ed. G.D. Winter, J.L. Leray, and K. de Groot (New York, NY: John Wiley & Sons, 1980), pp. 1–34.

    Google Scholar 

  125. J.W. Edie, G.F. Andreasen, and P. Zaytoun, Angle Orthod., 51 (1981), pp. 319–324.

    CAS  Google Scholar 

  126. A. Cigada et al., Clinical Implants Materials, ed. G. Heimke, U. Soltész, and A.J.C. Lee (New York, NY: Elsevier Publishers, 1990), pp. 51–56.

    Google Scholar 

  127. O.E.M. Pohler, Biomaterials in Reconstructive Surgery, ed. L.R. Rubin (St. Louis, MO: Mosby, 1983), pp. 158–228.

    Google Scholar 

  128. S.A. Shabalovskaya and J.W. Anderegg, J. Vac. Sci. Technol. A, 13 (1995), pp. 2624–2632.

    Article  CAS  Google Scholar 

  129. T.G. Bradley, W.A. Brantley, and B.M. Culbertson, Am. J. Orthod. Dentofac. Ortop., 109 (1996), pp. 589–597.

    Article  CAS  Google Scholar 

  130. H. Pops, Metall. Trans., 1 (1970), pp. 251–256.

    CAS  Google Scholar 

  131. G. Barceló, R. Rapacioli, and M. Ahlers, Scr. Metall., 12 (1978), pp. 1069–1075.

    Article  Google Scholar 

  132. M.H. Wu, Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig et al. (Stoneham, MA: Butterworth-Heineman, 1990), pp. 69–88.

    Google Scholar 

  133. G.B. Brooks, Gold Bull., 6 (1973), pp. 8–12.

    Google Scholar 

  134. G.V. Raynor, Gold Bull., 9 (1976), pp. 50–54.

    CAS  Google Scholar 

  135. M. Grimwade, Interd. Sc. Rev., 17 (1992), pp. 371–381.

    Google Scholar 

  136. Y. Shirai and S. Hayashi, Mitsubishi Heavy Industries Ltd. Technical Bullettin 184 (1988).

  137. S. Echigo et al., ASAIO Trans., 36 (1990), pp. M195–198.

    CAS  Google Scholar 

  138. C. Liang, C.A. Rogers, and E. Malafeew, Smart Struct. Mater., 123 (1991), pp. 97–105.

    Google Scholar 

  139. S. Hayashi, Intern. Progr. in Urethanes, 6 (1993), pp. 90–115.

    CAS  Google Scholar 

  140. P.N. Sawyer and S.R. Srinivasan, Bull. N.Y. Acad. Med., 48 (2) (1972), pp. 235–286.

    CAS  Google Scholar 

  141. P.N. Sawyer et al., Trans. Amer. Soc. Int. Organs, 19 (1973), pp. 195–199.

    CAS  Google Scholar 

  142. S. Lombardi, « Amélioration de la Résistance à la Corrosion de l’alliage à Mémoire de Forme Nickel-Titane par Modification de Surface, » Master Thesis, Institute de Génie Biomédical, Ecole Polytechnique, Montreal, Quebec, Canada, January 1995.

    Google Scholar 

  143. S. Lombardi et al., Proc. First Intern. Conf. on Shape Memory and Superelastic Technologies, in Ref. 32(, pp. 221–226.

    Google Scholar 

  144. B.D. Ratner, A. Chikoti, and G.A. Lopez, Plasma Deposition, Treatment and Etching of Polymers, ed. R. D’Agostino (San Diego, CA: Academic Press, 1990), pp. 463–516.

    Google Scholar 

  145. Y.S. Yah et al., J. Biomed. Mater. Res., 22 (1988), pp. 795–818.

    Article  Google Scholar 

  146. M. Tabrizian et al., (Paper presented at a seminar on shape memory alloys, Missisagua, Ontario, Canada, December 1996).

  147. J. Cederström and J. Van Humbeeck, J. de Physique IV, C2, suppl. J. de Physique III, 5 (1995), pp. 335–341.

Reference Books on SMA

  1. L. Friberg, G.F. Nordberg, and V.B. Vouk, eds., Handbook on the Metal Toxicology (Amsterdam: Elsevier/North Holland Biomedical Press, 1979), 32, p. 541.

    Google Scholar 

  2. F.W. Sunderman, ed., Nickel in the Human Environment (Lyon, France: Int. Agency for Research on Cancer, 1984). Nickel (Washington, D.C.: National Research Council, Division of Medical Sciences, 1975).

    Google Scholar 

  3. W.Z. Friend ed., Corrosion of Nickel and Nickel-Based Alloys (New York, NY: John Wiley & Sons, 1980).

    Google Scholar 

  4. D.H.K. Lee, ed., Metallic Contaminants and Human Health (New York: Academic Press, 1972).

    Google Scholar 

  5. H. Funakabo, ed., translated from Japanese by J.B. Kennedy, Shape Memory Alloys (Amsterdam, Holland: Gordon and Breach Science Publishers, 1987).

    Google Scholar 

  6. T.W. Duerig et al., Engineering Aspects of Shape Memory Alloys (London: Butterworth-Heineman, 1990).

    Google Scholar 

  7. A. Patoor and M. Berveiller, eds., Technologie des Alliages à Mémoire de Forme: Comportement Mécanique et Mise en Oeuvre (Paris, France: Traité des nouvelles technologies, série matériaux. Édition Hermès, 1994).

    Google Scholar 

  8. R.E. Whan, ed., Metals Handbook, Volume 10: Metals Characterization, (Metals Park, OH: American Society for Metals, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Diego Mantovani, Laval University, Department of Mining, Metallurgy and Materials Engineering, Pouliot Building, Room 1745-E, Quebec City, QC G1K 7P4, Canada; (418) 656-2131, ext. 6270; fax (418) 656-5343; e-mail: Diego.Mantovani@gmn.ulaval.ca

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantovani, D. Shape memory alloys: Properties and biomedical applications. JOM 52, 36–44 (2000). https://doi.org/10.1007/s11837-000-0082-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0082-4

Keywords

Navigation