Skip to main content
Log in

Designing oxidation-resistant coatings

  • Overview
  • Oxidation Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article examines the historical development of high-temperature, oxidation- and corrosion-resistant coatings, demonstrating how diffusion surface treatments, modified diffusion coatings, the design of M-Cr-Al-X corrosion-resistant overlay coatings, and the application of thermal-barrier coatings can be used to reduce the scaling (oxidation) rate of coated components. Future trends in high-temperature coating design are also reviewed, including the custom design of corrosion-resistant alloys, smart overlay coating concepts, diffusion barriers, and the use of layered thermal-barrier coating structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hancock and J.R. Nicholls, “Fundamental and Engineering Aspects of Coatings for Diesel and Gas Turbines,” NATO Workshops into Advanced Coatings for Diesels and Gas Turbines (1994), pp. 31–58.

  2. S.R.J. Saunders and J.R. Nicholls, “Oxidation, Hot Corrosion and Protection of Metallic Materials,” Physical Metallurgy: Fourth Edition, chapter 14, ed R.W. Cahn and P. Hassen (Netherlands: Elsevier Science, 1996).

    Google Scholar 

  3. M. Brady, B. Gleeson, and I. Wright, in this issue.

  4. J. Smialek and J. Glenn, in this issue.

  5. R.L. Samuel and N.A. Lockington, Met. Treat. Drop Forging, 18 (1951), pp. 354–359, 407–415, 440–444, 495–502, and 506.

    CAS  Google Scholar 

  6. A.H. Sully and E.A. Brandes, Chromium, 2nd ed., Chap. 7 (London: Butterworths, 1967).

    Google Scholar 

  7. G.W. Goward and L.W. Cannon, “Pack Cementation Coatings for Superalloys, History, Theory and Practice,” ASME Paper 87-GT-50 (New York: American Society Mechanical Engineers, 1988).

    Google Scholar 

  8. G.W. Goward and D.H. Boone, Oxid. Met., 3 (1971), p. 475.

    Article  CAS  Google Scholar 

  9. S.J. Grisaffe, The Superalloys, ed. C.T. Sims and W.C. Hagel (New York: John Wiley, 1972) p. 341.

    Google Scholar 

  10. P. Felix and E. Erdos, Werkstoffe u. Korros., 23 (1972), p. 626.

    Article  Google Scholar 

  11. F. Fitzer and J. Schlichting, High Temperature Corrosion (Houston, TX: NACE, 1984), pp. 604–614.

    Google Scholar 

  12. R. Mevrel, C. Duret, and R. Pichoir, Mater. Sci. Technol., 2 (1986), p. 201.

    CAS  Google Scholar 

  13. J.R. Nicholls and P. Hancock, Ind. Corros., 5 (4) (1987), pp. 8–18.

    Google Scholar 

  14. S.R. Levine and R.M. Caves, J. Electrochem. Soc., 120 (8) (1973), p. C232.

  15. R. Bianco and R.A. Rapp, J. Electrochem. Soc., 140 (4) (1993), pp. 1181–1191.

    Article  CAS  Google Scholar 

  16. C. Duret et al., High Temperature Alloys for Gas Turbines, ed. R. Brunetaud et al. (Dordrecht, Netherlands: D. Reidel Publishing Co., (1982), pp. 53–87.

    Google Scholar 

  17. G. Lehnert and H. Meinhardt, Surface Treatment 1, 72 (1972).

    Google Scholar 

  18. G. Fisher, “The Optimisation of Bond Coat Oxides for Improved Thermal Barrier Coating Adhesion,” Ph.D. thesis, Cranfield University (1997).

  19. F.T. Talboom, R.C. Elam, and L.W. Wilson, Evaluation of Advanced Superalloy Protection Systems, Report CR7813 (Houston, TX: NASA, 1970).

    Google Scholar 

  20. G.W. Goward, High Temperature Corrosion, ed. R.A. Rapp (Houston, TX: NACE, 1983), pp. 553–560.

    Google Scholar 

  21. R.L. Clarke, Proc. 4th Systems Command (June 1979), pp. 189–219.

  22. J.T. Prater et al., Proc. 2nd Conf. on Advanced Materials for Alternate Fuel Capable Heat Engines, Report No. 2639SR, ed. J.W. Firbanks and J. Stringer (Palo Alto, CA: EPRI, 1981), pp. 7/29–7/43.

    Google Scholar 

  23. J.A. Goebel, R.J. Hecht, and J.R. Vargas, Proc. 4th Conf on Gas Turbine Materials in a Marine Environment (Annapolis, MD: Naval Sea Systems Command, 1979), pp. 635–653.

    Google Scholar 

  24. J.A. Goebel et al., in Reference 22, p. 7/1.

    Google Scholar 

  25. R.G. Corey et al., in Reference 22, p. 7/17.

    Google Scholar 

  26. D.K. Gupta and D.S. Duvall, “Coatings for Single Crystal Superalloys” (Warrendale, PA: TMS, 1984).

    Google Scholar 

  27. B.A. Pint, Materials Science Forum, 251–254 (1997), pp. 397–404.

    Google Scholar 

  28. A.R. Nicoll, Coatings and Surface Treatment for Corrosion and Wear Resistance, ed. K.N. Strafford et al. (Chichester: Ellis Horwood, 1984), p. 180.

    Google Scholar 

  29. T.A. Taylor et al., J. Vac. Sci. Tech., 3 (1985), p. 2526.

    Article  CAS  Google Scholar 

  30. J.E. Restall and M.I. Wood, Mater. Sci. Techn., 2 (1986), p. 225.

    CAS  Google Scholar 

  31. H. Herman, “Powders for Thermal Spray Technology,” Thermal Spray Technology. Powder Science and Technology, 9 (1991), pp. 187–199.

    Google Scholar 

  32. R.W. Kaufol et al., “Deposition of Coatings Using a New High Velocity Combustion Spray Gun,” Thermal Spray Research and Applications, ed., T.F. Bernecki (Materials Park, OH: ASM, 1990), pp. 561–569.

    Google Scholar 

  33. L. Russo and M. Dorfman, “High-Temperature Oxidation of MCrAlY Coatings Produced by HVOF,” Proc. Int. Thermal Spray Conference, ed. A. Ohmori (Japan: High Temperature Society of Japan), pp. 1179–1194.

  34. E.C. Kedward, Metallurgia, 79, (1969), p. 225.

    CAS  Google Scholar 

  35. J. Forster, B.P. Cameron, and J.A. Carews, Trans. Inst. Metal Finish, 63 (1985), p. 115.

    Google Scholar 

  36. F.J. Honey, E.C. Kedward, and V. Wride, J. Vac. Sci. Tech., (1986).

  37. W.M. Steen, Applied Laser Tooling, ed. G.D.D. Soares and M. Perez-Amor (Dordrecht, Netherlands: Martinue Nijhoff, 1987), pp. 131–211.

    Google Scholar 

  38. D.H. Boone, Materials Coating Techniques, Chap. 8 (Neuillysur-Seine, France: AGARD, 1980).

    Google Scholar 

  39. K. Niederberger and B. Schiffer, “Eigenschaften Verschiedener Gase und Deren Einfluss,” Proc. Thermische Spirtzkonferenez (Essen, Germany: 1990), pp. 1–5.

  40. H. Kreye, “HIgh Velocity Flame Spraying-Processes and Coating Characteristics,” Second Plasma Technik, Symposium (1991), pp. 39–47.

  41. C.S. Giggins and F.S. Pettit, Hot Corrosion Degradation of Metals and Alloys—A Unified Theory, PWA-Report FR-11545 (1979).

  42. N. Birks and G.H. Meier, Introduction to High Temperature Oxidation of Metals (London: Edward Arnold Publishers, 1983).

    Google Scholar 

  43. P. Kofstad, High Temperature Corrosion (New York: Elsevier, 1988).

    Google Scholar 

  44. M. Malik, Morbioli, and P. Huber, High Temperature Alloys for Gas Turbines, ed. R. Brunetaud et al. (Dordrecht, Netherlands: D. Reidel Publishing Co., 1982), pp. 87–98.

    Google Scholar 

  45. J.R. Nicholls et al., Proc. Workshop on Gas Turbine Materials in a Marine Environment (Bath, U.K.: Ministry of Defence, 1984).

    Google Scholar 

  46. J.R. Nicholls and S.R.J. Saunders, High Temperature Materials for Power Engineering, ed. E. Bachelet et al. (Dordrecht, Netherlands: Kluwer Academic Publishers, 1990), pp. 865–875.

    Google Scholar 

  47. K.L. Luthra and O.H. LeBlanc, Mater. Sci. & Eng., 88 (1987), p. 329.

    Article  Google Scholar 

  48. R.C. Novak (1994), cited in reference 7“.

    Google Scholar 

  49. A.J.A. Mom, NLR Report MP 81003U (Amsterdam: 1981).

  50. D.R. Coupland, C.W. Hall, and I.R. McGill, Platinum Metal Review, 26 (4) (1982), pp. 146–157.

    CAS  Google Scholar 

  51. S.R.J. Saunders and J.R. Nicholls, Thin Solid Films, 119 (1984), p. 247.

    Article  CAS  Google Scholar 

  52. N.S. Bornstein and J. Smeggil, Corrosion of Metals Processed by Directed Energy Beams (Warrendale, PA: TMS, 1982), pp. 147–158.

    Google Scholar 

  53. J.E. Restall and C. Hayman, Proc. Coatings for Heat Engines Workshop, ed. R.L. Clarke et al. (Washington, D.C.: U.S. Department of Energy, 1984), pp. 347–357.

    Google Scholar 

  54. J.R. Rairden III, U.S. patent 3,874,901 (1975).

  55. J.R. Nicholls, “Smart Coatings—A Bright Future,” Materials World, 4 (1) (1996), pp. 19–21.

    CAS  Google Scholar 

  56. J.R. Nicholls et al., “Hot Corrosion of Smart Overlay Coatings” (Paper presented at Electrochem Soc. Conf., Hawaii, 18–22 October 1999); to be published in the J. Electrochem. Soc. (1999).

  57. P. Hancock and J.R. Nicholls, Proc. Coating for Heat Engines Workshop, ed. R.L. Clarke et al. (Washington, D.C.: U.S. Department of Energy, 1984), pp. 31–58.

    Google Scholar 

  58. S.P. Cooper and A. Strang, in Ref. 16, pp. 249–260.

    Google Scholar 

  59. E. Lang and E. Bullock, European Concerted Action, COST 50—Materials for Gas Turbines, EUR Report 8242 EN (1982).

  60. P. Mazar, D. Maresse, and C. Lopvet, High Temperature Alloys for Gas Turbines 1986, ed. M. Betz et al. (Dordrecht, Netherlands: D. Reidel Publishing Co., 1986), pp. 1183–1192.

    Google Scholar 

  61. J.R. Nicholls, P. Hancock, and L.H. Al-Yasiri, Materials Science and Technology, 5 (1989), pp. 780–798.

    Google Scholar 

  62. J.R. Nicholls et al., Corros. Sci., 35 (1993), p. 1209.

    Article  CAS  Google Scholar 

  63. P. Kettunen, European Concerted Action COST 501/II (1994).

  64. J.R. Nicholls et al., European Research on Materials Substitution, ed. I.V. Mitchell and H. Nosbuch (London: Elsevier, 1988), pp. 295–307.

    Google Scholar 

  65. R.J.E. Glenny, High Temperature Materials in Gas Turbines, ed. P.R. Sahmand M.O. Speidel (Amsterdam: Elsevier, (1974), p. 257.

    Google Scholar 

  66. J. Gayda et al., “Bithermal Low-Cycle Fatigue Behavior of a NiCoCrAlY-Coated Single Crystal Superalloy,” Effects of Load and Thermal Histories on Mechanical Behavior of Materials, ed. P.K. Liaw and T. Nicholas (Warrendale, PA: TMS, (1987), pp. 179–198.

    Google Scholar 

  67. A. Strang and E. Lang, in Ref. 16, pp. 469–506.

    Google Scholar 

  68. P. Au, R.V. Dainty, and P.C. Patnaik, “Isothermal Low Cycle Fatigue Properties of Diffusion Aluminide Coated Nickel and Cobalt Based Superalloys,” Surface Modification Technologies III, ed. T.S. Sudarshan and D.G. Bhat (Warrendale, PA: TMS, 1990), pp. 729–748.

    Google Scholar 

  69. D.S. Duvall and D.L. Ruckle, ASME Paper 82-Gt-327 (1982).

  70. T.E. Strangman, “Development and Performance of Physical Vapour Deposition Thermal Barrier Coatings Systems” (Paper presented at the 1987 Workshop on Coatings for Advanced Heat Engines, Castine, Maine, 27–30 July 1987).

  71. J.W. Fairbanks and R.J. Hecht, Mater. Sci. Eng., 88 (1987), p. 321.

    Article  CAS  Google Scholar 

  72. S. Bose and J. Demasi-Marcin, “Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt and Whitney,” Thermal Barrier Coatings Workshop, NASA-CP-3312 (Cleveland, OH: NASA Lewis Research Center, 1995), pp. 63–77.

    Google Scholar 

  73. J.R. Nicholls, K.J. Lawson, D.S. Rickerby, and P. Morrel, Advanced Processing of TBCs for Reduced Thermal Conductivity, Agard Report No. 823 (April 1998).

  74. J.R. Nicholls, “Smart Multilayered Coating with Controlled Thermal Conductivities using Plasma Assisted Deposition” (Paper presented at the CIP 99 Conference, June 1999).

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact J.R. Nicholls, Cranfield University, School of Industrial and Manufacturing Science, Cranfield, Bedfordshire MK430AL, United Kingdom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholls, J.R. Designing oxidation-resistant coatings. JOM 52, 28–35 (2000). https://doi.org/10.1007/s11837-000-0112-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0112-2

Keywords

Navigation