Skip to main content
Log in

Using equal-channel angular pressing for refining grain size

  • Overview
  • Nanoscale Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Equal-channel angular pressing is an effective tool for attaining ultrafine grain sizes in bulk materials. An important advantage of this technique over conventional metalworking processes, such as extrusion and rolling, is that very high strains may be attained without any concomitant change in the cross-sectional dimensions of the sample. The microstructures introduced by equalchannel angular pressing critically depend on a number of experimental factors, including the nature of the slip systems introduced during the pressing operation and the total strain imposed on the sample. These factors are illustrated by reference to experiments conducted on pure aluminum; results are also included to demonstrate the influence of alloying additions and especially the remarkably small grain sizes that may be achieved in materials having low rates of recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Stolyarov et al., Nanostruct. Mater., 11 (1999), pp. 947–954.

    Article  CAS  Google Scholar 

  2. T.C. Lowe and R.Z. Valiev, JOM, 52 (4) (2000), pp. 27–28.

    CAS  Google Scholar 

  3. T.G. Langdon et al., JOM, 50 (6) (1998), pp. 41–45.

    Article  CAS  Google Scholar 

  4. K. Nakashima et al., Acta Mater., 46 (1998), pp. 1589–1599.

    Article  CAS  Google Scholar 

  5. Y. Iwahashi et al., Scripta Mater., 35 (1996), pp. 143–146.

    Article  CAS  Google Scholar 

  6. Y. Wu and I. Baker, Scripta Mater., 37 (1997), pp. 437–441.

    Article  CAS  Google Scholar 

  7. A. Shan et al., Scripta Mater., 41 (1999), pp. 353–357.

    Article  CAS  Google Scholar 

  8. V.M. Segal, Mater. Sci. Eng., A197 (1995), pp. 157–164.

    CAS  Google Scholar 

  9. V.M. Segal, Mater. Sci. Eng., A271 (1999), pp. 322–333.

    CAS  Google Scholar 

  10. M. Furukawa et al., Mater. Sci. Eng., A257 (1998), pp. 328–332.

    CAS  Google Scholar 

  11. Y. Iwahashi et al., Acta Mater., 46 (1998), pp. 3317–3331.

    Article  CAS  Google Scholar 

  12. K. Oh-ishi et al., Metall. Mater. Trans., 29A (1998), pp. 2011–2013.

    Article  CAS  Google Scholar 

  13. Y. Iwahashi et al., Acta Mater., 45 (1997), pp. 4733–4741.

    Article  CAS  Google Scholar 

  14. Y. Iwahashi et al., Metall. Mater. Trans., 29A (1998), pp. 2245–2252.

    Article  CAS  Google Scholar 

  15. P.B. Berbon et al., Mater. Res. Soc. Symp. Proc., 601 (Warrendale, PA: MRS, in press).

  16. S.D. Terhune et al., Proc. Fourth Int. Conf. Recrystallization and Related Phenomena, ed. T. Sakai and H.G. Suzuki (Sendai, Japan: Japan Institute of Metals, 1999), pp. 515–522.

    Google Scholar 

  17. J.K. Mackenzie, Acta Metall., 12 (1964), pp. 223–225.

    Article  CAS  Google Scholar 

  18. J. Wang et al., Acta Mater., 44 (1996), pp. 2973–2982.

    Article  CAS  Google Scholar 

  19. M. Furukawa et al., Acta Mater., 44 (1996), pp. 4619–4629.

    Article  CAS  Google Scholar 

  20. M. Furukawa et al., Acta Mater., 45 (1997), pp. 4751–4757.

    Article  CAS  Google Scholar 

  21. S. Ferrasse et al., Metall. Mater. Trans., 28A (1997), pp. 1047–1057.

    Article  CAS  Google Scholar 

  22. S. Ferrasse et al., J. Mater. Res., 12 (1997), pp. 1253–1261.

    CAS  Google Scholar 

  23. M. Mabuchi, H. Iwasaki, and K. Higashi, Nanostruct. Mater., 8 (1997), pp. 1105–1111.

    Article  CAS  Google Scholar 

  24. M. Kawazoe et al., Scripta Mater., 36 (1997), pp. 699–705.

    Article  CAS  Google Scholar 

  25. R.Z. Valiev et al., Scripta Mater., 37 (1997), pp. 1945–1950.

    Article  CAS  Google Scholar 

  26. T. Mukai, M. Kawazoe, and K. Higashi, Nanostruct. Mater., 10 (1998), pp. 755–765.

    Article  CAS  Google Scholar 

  27. M. Furukawa et al., Metall. Mater. Trans., 29A (1998), pp. 169–177.

    Article  CAS  Google Scholar 

  28. P.B. Berbon et al., Metall. Mater. Trans., 29A (1998), pp. 2237–2243.

    Article  CAS  Google Scholar 

  29. S. Komura et al., Scripta Mater., 38 (1998), pp. 1851–1856.

    Article  CAS  Google Scholar 

  30. P.B. Berbon et al., Phil. Mag. Lett., 78 (1998), pp. 313–318.

    Article  CAS  Google Scholar 

  31. P.B. Berbon et al., Mater. Trans. JIM, 40 (1999), pp. 772–778.

    CAS  Google Scholar 

  32. M. Murayama, K. Hono, and Z. Horita, Mater. Trans. JIM, 40 (1999), pp. 938–941.

    CAS  Google Scholar 

  33. F.J. Humphreys et al., Phil. Trans. R. Soc. Lond. A, 357 (1999), pp. 1663–1681.

    Article  CAS  Google Scholar 

  34. S. Lee et al., Mater. Sci. Eng., A272 (1999), pp. 63–72.

    CAS  Google Scholar 

  35. Y. Iwahashi et al., Metall. Mater. Trans., 29A (1998), pp. 2503–2510.

    Article  CAS  Google Scholar 

  36. S. Komura et al., J. Mater. Res., 14 (1999), pp. 4044–4050.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact T.G. Langdon, University of Southern California, Departments of Materials Science and Mechanical Engineering, Los Angeles, California 90089-1453; (213) 740-0491; fax (213) 740-7797; e-mail langdon@usc.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langdon, T.G., Furukawa, M., Nemoto, M. et al. Using equal-channel angular pressing for refining grain size. JOM 52, 30–33 (2000). https://doi.org/10.1007/s11837-000-0128-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0128-7

Keywords

Navigation