Skip to main content
Log in

Solidification and liquation cracking issues in welding

  • Overview
  • Welding
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Solidification cracking can occur in the fusion zone during the solidification of the weld metal. Liquation cracking, on the other hand, can occur in the partially melted zone during the solidification of the liquated material. These two types of cracking are reviewed in this article, including the factors that affect cracking and the remedies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Kou, Welding Metallurgy, 2nd edition (New York: John Wiley, 2003), pp. 263–339.

    Google Scholar 

  2. G.J. Davies and J.G. Garland, Int. Metal Rev., 20 (1975), p. 83.

    CAS  Google Scholar 

  3. D.C.G. Lees, J. Inst. Metals, 72 (1946), p. 343.

    CAS  Google Scholar 

  4. A.R.E. Singer and P.H. Jennings, J. Inst. Metals, 73 (1947), p. 273.

    CAS  Google Scholar 

  5. M.C. Flemings, Solidification Processing (New York: McGraw-Hill, 1974).

    Google Scholar 

  6. H.F. Bishop et al., Trans. AFS, 68 (1960), p. 518.

    Google Scholar 

  7. J.C. Borland, Br. Weld. J., 7 (1960), p. 508.

    Google Scholar 

  8. J.C. Borland, Welding and Metal Fabrication, 47 (January/February 1979), pp. 19–29.

    CAS  Google Scholar 

  9. R.D. Stout, Weldability of Steels, 3rd edition, ed. R.D. Stout and W.D. Doty (New York: Welding Research Council, 1978), p. 252.

    Google Scholar 

  10. R.W. Messler, Jr., Principles of Welding, Processes, Physics, Chemistry and Metallurgy (New York: Wiley, 1999), pp. 557–589.

    Google Scholar 

  11. P.T. Houdcroft, Br. Weld. J., 2 (1955), p. 471.

    Google Scholar 

  12. J.A. Liptax and F.R. Baysinger, Weld. J., 47 (1968), p. 173s.

  13. J.G. Garland and G.J. Davies, Metals Const. Br. Weld. J., 16 (December 1969), p. 565.

    Google Scholar 

  14. J.H. Rogerson, B. Cotterell, and J.C. Borland, Weld. J., 42 (1963), p. 264s.

  15. W.F. Savage and C.D. Lundin, Weld. J., 44 (1965), p. 433s.

  16. K. Nakata and F. Matsuda, Trans. JWRI, 24 (1995), p. 83.

    CAS  Google Scholar 

  17. K.F. Krysiak et al., Welding, Brazing, and Soldering, Volume 6 (Materials Park, OH: ASM International, 1993), p. 443.

    Google Scholar 

  18. J.N. DuPont, J.R. Michael, and B.D. Newbury, Weld. J., 78 (1999), p. 408s.

  19. M.J. Cieslak, Weld. J., 66 (1987), p. 57s.

  20. S.A. David and J.J. Woodhouse, Weld. J., 66 (1987), p. 129s.

  21. T.W. Nelson et al., Weld. J., 76 (1997), p. 110s.

  22. G.M. Goodwin, Weld. J., 66 (1987), p. 33s.

  23. J.N. DuPont, C.V. Robino, and A.R. Marder, Sci. Technol. Weld. Join., 4 (1999), p. 1.

    CAS  Google Scholar 

  24. G.R. Pease, Weld. J., 36 (1957), p. 330s.

  25. D.A. Canonico et al., Welding Research Council Symposium on Effects of Minor Elements on the Weldability of High-Nickel Alloys (New York: Welding Research Council, 1969), p. 68.

    Google Scholar 

  26. W.F. Savage, E.F. Nippes, and G.M. Goodwin, Weld. J., 56 (1977), p. 245s.

  27. D.H. Kah and D.W. Dickinson. Weld. J., 60 (1981), p. 135s.

  28. A.R.E. Singer and P.H. Jennings, J. Inst. Metals, 73 (1947), p. 197.

    Google Scholar 

  29. W.I. Pumphrey and J.V. Lyons, J. Inst. Metals, 74 (1948), p. 439.

    CAS  Google Scholar 

  30. J.D. Dowd, Weld. J., 31 (1952), p. 448s.

  31. P.H. Jennings, A.R.E. Singer, and W.L. Pumphrey, J. Inst. Metals, 74 (1948), p. 227.

    CAS  Google Scholar 

  32. J.H. Dudas and F.R. Collins, Weld. J., 45 (1966), p. 241s.

  33. E.J. Michaud, H.W. Kerr, and D.C. Weckman, Trends in Welding Research, ed. H.B. Smartt, J.A. Johnson, and S.A. David (Materials Park, OH: ASM International, 1995), p. 154.

    Google Scholar 

  34. A. Gueussier and R. Castro, Rev. Metall., 57 (1960), p. 117.

    Google Scholar 

  35. T. Takalo, N. Suutala, and T. Moisio, Metall. Trans., 10A (1979), p. 1173.

    CAS  Google Scholar 

  36. T.J. Lienert, Trends in Welding Research, ed. J.M. Vitek et al. (Materials Park, OH: ASM International, 1998), p. 726.

    Google Scholar 

  37. C.R. Smith, Trans. AIME, 175 (1948), p. 15.

    Google Scholar 

  38. F. Matsuda et al., Trans JWRI, 12 (1983), p. 93.

    Google Scholar 

  39. F. Matsuda et al., Trans JWRI, 13 (1984), p. 57.

    CAS  Google Scholar 

  40. M.J. Dvornak, R.H. Frost, and D.L. Olson, Weld. J., 68 (1989), p. 327s.

  41. W.L. Pumphrey and D.C. Moore, J. Inst. Metals, 73 (1948), p. 425.

    Google Scholar 

  42. A.L. Schaeffler, Metal. Prog., 56 (1949), p. 680.

    CAS  Google Scholar 

  43. W.T. Delong, Weld. J., 53 (1974), p. 273s.

  44. D.J. Kotecki, Weld. J., 78 (1999), p. 180s.

  45. D.J. Kotecki, Weld. J., 79 (2000), p. 346s.

  46. M.C. Balmforth and J.C. Lippold, Weld. J., 79 (2000), p. 339s.

  47. J.M. Vitek, Y.S. Iskander, and E.M. Oblow, Weld. J., 79 (2000), pp. 33s and 41s.

  48. J.M. Vitek, S.A. David, and C.R. Hinman, Weld. J., 82 (2003), p. 43s.

  49. R.B. Smith, Welding, Brazing, and Soldering, Volume 6 (Materials Park, OH: ASM International, 1993), p. 642.

    Google Scholar 

  50. J.C. Borland, Br. Weld. J., 8 (1961), p. 526.

    CAS  Google Scholar 

  51. G.N. Heintze and R. McPherson, Weld. J., 65 (1986), p. 71s.

  52. W.A. Petersen, Weld. J., 53 (1973), p. 74s.

  53. B.P. Pearce and H.W. Kerr, Metall. Trans., 12B (1981), p. 479.

    CAS  Google Scholar 

  54. F. Matsuda et al., Trans. JWRI, 12 (1983), p. 93.

    Google Scholar 

  55. H. Yunjia et al., Weld. J., 68 (1983), p. 280s.

  56. S. Sundaresan et al., Science and Technology of Welding and Joining, 5 (2000), p. 257.

    Article  CAS  Google Scholar 

  57. J.G. Garland, Metal Const. Br. Weld. J., 21 (1974), p. 121.

    Google Scholar 

  58. S. Kou and Y. Le, Weld. J., 64 (1985), p. 51.

    Google Scholar 

  59. S.A. David and C.T. Liu, Grain Refinement in Castings and Welds, ed. G.J. Abbaschian and S.A. David (Warrendale, PA: The Metallurgical Society of AIME, 1983), p. 249.

    Google Scholar 

  60. C. Tseng and W.F. Savage, Weld. J., 50 (1971), p. 777.

    Google Scholar 

  61. S. Kou and Y. Le, Metall. Trans., 16A (1985), p. 1887.

    CAS  Google Scholar 

  62. S. Kou and Y. Le, Metall. Trans., 16A (1985), p. 1345.

    CAS  Google Scholar 

  63. O.W. Blodgett, Weld. Innovation Q., 2 (3) (1985), p. 4.

    Google Scholar 

  64. R.G. Thompson, ASM Handbook, volume 6 (Materials Park, OH: ASM International, 1993), p. 566.

    Google Scholar 

  65. N.F. Gittos and M.H. Scott, Weld. J., 60 (1981), p. 95s.

  66. M.J. Cieslak, ASM Handbook, Welding, Brazing and Soldering, vol. 6 (Materials Park, OH: ASM International, 1993), p. 88.

    Google Scholar 

  67. G.E. Metzger, Weld. J., 46 (10) (1967), pp. 457s-469s.

    Google Scholar 

  68. J.E. Steenbergen and H.R. Thornton, Weld. J., 49 (2) (1970), pp. 61s-68s.

    Google Scholar 

  69. N.F. Gittos and M.H. Scott, Weld. J., 60 (6) (1981), pp. 95s-103s.

    Google Scholar 

  70. T. Ma and G. Den Ouden, Int. J. for the Joining of Materials (Denmark), 11 (3) (1999), pp. 61–67.

    Google Scholar 

  71. C. Huang and S. Kou, “Liquation Cracking in Full-Penetration Aluminum Welds: Binary Al-Cu Welds,” submitted to Welding Journal.

  72. C. Huang and S. Kou, “Liquation Cracking in Full-Penetration Aluminum Welds: Al-Mg vs. Al-Si Fillers for Welding Al-Mg-Si Alloys,” submitted to Welding Journal.

  73. Pandat, computer software developed by Compu-Therm LLC, Madison, WI.

  74. M. Katoh and H.W. Kerr, Weld. J., 66 (1987), p. 360s.

  75. H.W. Kerr and M. Katoh, Weld. J., 66 (1987), p. 251s.

  76. M. Miyazaki et al., Weld. J., 69 (1990), p. 362s.

  77. C. Huang, G. Cao, and S. Kou, “Liquation Cracking in Partial-Penetration Aluminum Welds: Assessing Tendencies to Liquate, Crack and Backfill,” submitted to Science and Technology of Welding and Joining.

  78. C. Huang, S. Kou, and J.R. Purins, Proceedings of Merton C. Flemings symposium on Solidification and Materials Processing, ed. R. Abbaschian, H. Brod, and A. Mortensen (Warrendale, PA: TMS, 2001), p. 229.

    Google Scholar 

  79. R.G. Thompson et al. Weld. J., 64 (1985), p. 91s.

  80. H. Guo, M.C. Chaturvedi, and N.L. Richards, Science and Technology of Welding and Joining, 4 (1999), p. 257.

    Article  CAS  Google Scholar 

  81. W. Yeniscavich, Methods of High-Alloy Weldability Evaluation, (New York: Welding Research Council, 1970), p. 1.

    Google Scholar 

  82. W.R. Apblett and W.S. Pellini, Weld. J., 33 (1954), p. 83s.

  83. M.J. Cieslak, ASM Handbook, Welding, Brazing and Soldering, vol. 6 (Materials Park, OH: ASM International, 1993), p. 495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Sindo Kou, University of Wisconsin, Department of Materials Science and Engineering, 1509 University Avenue, Madison, Wisconsin 53706; (608) 262-0576; fax (608) 262-8648; e-mail kou@engr.wisc.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kou, S. Solidification and liquation cracking issues in welding. JOM 55, 37–42 (2003). https://doi.org/10.1007/s11837-003-0137-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0137-4

Keywords

Navigation