Skip to main content
Log in

The fundamentals of nanostructured materials processed by severe plastic deformation

  • Overview
  • Nanomaterials By SPD
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanostructured materials produced by severe plastic deformation (SPD) are 100% dense, contamination-free, and sufficiently large for use in real commercial structural applications. These materials are found to have high strength, good ductility, superior superplasticity, a low friction coefficient, high wear resistance, enhanced high-cycle fatigue life, and good corrosion resistance. This article reviews the structures and properties of nanostructured materials produced by SPD and reports recent progress in determining the deformation mechanisms that lead to these superior mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 45 (2000), p. 103.

    Article  CAS  Google Scholar 

  2. R. Birringer et al., Phys. Lett. A, 102 (1984), p. 365.

    Article  Google Scholar 

  3. R.W. Siegel, Fundamental Properties of Nanostructured Materials, ed. D. Fiorani and G. Sberveglieri (Singapore: World Scientific, 1993), pp. 3–19.

    Google Scholar 

  4. X. Zhang, H. Wang, and C.C. Koch, Rev. Adv. Mater. Sci., 6 (2004), p. 53.

    CAS  Google Scholar 

  5. T.C. Lowe and R.Z. Valiev, JOM, in this issue.

  6. S.L. Semiatin, A. Salem, and M.J. Saran, JOM, in this issue.

  7. V.V. Stolyarov et al., NanoStruct. Mater., 11 (1999), p. 947.

    Article  CAS  Google Scholar 

  8. H.G. Jiang et al., Mater. Sci. Eng., A290 (2000), p. 128.

    CAS  Google Scholar 

  9. R.Z. Valiev et al., J. Mater. Res., 17 (2002), p. 5.

    CAS  Google Scholar 

  10. A.P. Zhilyaev et al., Acta Mater., 51 (2003), p. 753.

    Article  CAS  Google Scholar 

  11. X.Z. Liao et al., Appl. Phys. Lett., 84 (2004), p. 592.

    Article  CAS  Google Scholar 

  12. X.Z. Liao et al., J. Appl. Phys., 96 (2004), p. 636.

    Article  CAS  Google Scholar 

  13. R.Z. Valiev et al., Scripta Mater., 37 (1997), p. 1945.

    Article  CAS  Google Scholar 

  14. S. Komura et al., Metall. Mater. Trans. A, 32A (2001), p. 707.

    Article  CAS  Google Scholar 

  15. S. Komura et al., Mater. Sci. Eng., A297 (2001), p. 111.

    CAS  Google Scholar 

  16. D.H. Shin et al., Metall. Mater. Trans. A, 35A (2004), p. 825.

    Article  CAS  Google Scholar 

  17. Z. Horita et al., Metall. Mater. Trans., 31A (2000), p. 691.

    Article  CAS  Google Scholar 

  18. X. Zhang et al., Appl. Phys. Lett., 81 (2002), p. 823.

    Article  CAS  Google Scholar 

  19. X.Z. Liao et al., Appl. Phys. Lett., 83 (2003), p. 632.

    Article  CAS  Google Scholar 

  20. D.H. Shin et al., Mater. Sci. Eng., A325 (2002), p. 31.

    CAS  Google Scholar 

  21. I.V. Alexandrov et al., Metall. Mater. Trans. A, 29 (1998), p. 2253.

    Article  Google Scholar 

  22. Y.T. Zhu et al., Metall. Mater. Trans., 32A (2001), p. 1559.

    Article  CAS  Google Scholar 

  23. J.Y. Huang et al., Acta Mater., 49 (2001), p. 1497.

    Article  CAS  Google Scholar 

  24. Y.T. Zhu et al., J. Mater. Res., 18 (2003), p. 1908.

    CAS  Google Scholar 

  25. C.C. Koch, Scripta Mat., 49 (2003), p. 657.

    Article  CAS  Google Scholar 

  26. Y.T. Zhu and X.Z. Liao, Nature Mater., 3 (2004), p. 351.

    Article  CAS  Google Scholar 

  27. F. Dalla Torre et al., Acta Mater., 52, 4819 (2004).

    Article  CAS  Google Scholar 

  28. V.V. Stolyarov et al., Mater. Sci. Eng., A303 (2002), p. 82.

    Google Scholar 

  29. D. Jia et al., Appl. Phys. Lett., 79 (2002), p. 611.

    Article  CAS  Google Scholar 

  30. V.V. Stolyarov et al., Mater. Sci. Eng., A343 (2003), p. 43.

    CAS  Google Scholar 

  31. Y.T. Zhu et al., J. Mater. Res., 18 (2003), p. 1011.

    Article  CAS  Google Scholar 

  32. Y.M. Wang et al., Adv. Mater., 16 (2004), p. 328.

    Article  CAS  Google Scholar 

  33. H. Van Swygenhoven, Science, 296 (2002), p. 66.

    Article  Google Scholar 

  34. V. Yamakov et al., Nature Mater., 1 (2002), p. 1.

    Article  CAS  Google Scholar 

  35. H. Van Swygenhoven, P.M. Derlet, and G. Frøseth, Nature Mater., 3 (2004), p. 399.

    Article  CAS  Google Scholar 

  36. X.Z. Liao et al., Appl. Phys. Lett., 83 (2003), p. 5062.

    Article  CAS  Google Scholar 

  37. M. Chen et al., Science, 300 (2003), p. 1275.

    Article  CAS  Google Scholar 

  38. X.Z. Liao et al., Appl. Phys. Lett., 84 (2004), p. 3564.

    Article  CAS  Google Scholar 

  39. D.L. Medlin, S.M. Foiles, and D. Cohen, Acta Mater., 49 (2001), p. 3689.

    Article  CAS  Google Scholar 

  40. Y.H. Zhao et al., Acta Mater. (in press).

  41. A.J. Barnes, Mater. Sci. Forum, 357 (2001), p. 3.

    Google Scholar 

  42. T.G. Langdon, Acta Metall. Mater., 42 (1994), p. 2437.

    Article  CAS  Google Scholar 

  43. S.X. McFadden et al., Nature, 398 (1999), p. 884.

    Google Scholar 

  44. S.-M. Lee and T.G. Langdon, Mater. Sci. Forum, 357–359 (2001) p. 321.

    Article  Google Scholar 

  45. C. Xu et al., Acta Mater., 51 (2003), p. 6139.

    Article  CAS  Google Scholar 

  46. A.P. Zhilyaev et al., Scripta Mater., 46 (2002), p. 575.

    Article  CAS  Google Scholar 

  47. A.P. Zhilyaev et al., Russian Metall. (Metally), 2004 (1) (2004), p. 60.

    Google Scholar 

  48. K. Harada et al., Scripta Mater., 49 (2003), p. 367.

    Article  CAS  Google Scholar 

  49. B.B. Straimal et al., Defect Diffusion Forum, 217–217 (2003), p. 307.

    Google Scholar 

  50. M.Yu. Gutkin, I.A. Ovid’ko, and N.V. Skiba, J. Phys. D: Appl. Phys., 36 (2003), p. L47.

    Google Scholar 

  51. M. Kamachi et al., Mater. Sci. Eng., A361 (2003), p. 258.

    CAS  Google Scholar 

  52. H. Akamatsu et al., Scripta Mater., 44 (2001), p. 759.

    Article  CAS  Google Scholar 

  53. T. Tanaka et al., Scripta Mater., 49 (2003), p. 361.

    Article  CAS  Google Scholar 

  54. A. Vinogradov and S. Hashimoto, Adv. Eng. Mater., 5 (2003), p. 351.

    Article  CAS  Google Scholar 

  55. R.Z. Valiev. V.V. Stolyarov, and Y.T. Zhu, unpublished data (2002).

  56. V.V. Stolyarov et al., Mater. Sci. Eng., A371 (2004), p. 313.

    CAS  Google Scholar 

  57. Z.B. Wang et al., Mater. Sci. Eng., A352 (2003), p. 144.

    CAS  Google Scholar 

  58. A. Balyanov et al., Scripta Mater., 51 (2004), p. 225.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact Yuntian T. Zhu, Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, NM 87545; (505) 667-4029; fax (505) 667-2264; e-mail yzhu@lanl.gov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y.T., Langdon, T.G. The fundamentals of nanostructured materials processed by severe plastic deformation. JOM 56, 58–63 (2004). https://doi.org/10.1007/s11837-004-0294-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-004-0294-0

Keywords

Navigation