Skip to main content
Log in

The mechanical behavior of GLARE laminates for aircraft structures

  • Overview
  • Failure In Structural Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A.J.R. Vermeeren, “An Historic Overview of the Development of Fiber Metal Laminates,” Appl. Comp. Mater., 10 (2003), pp. 189–205.

    Article  CAS  Google Scholar 

  2. A. Volt, L.B. Vogelesang, and T.J. de Vries, “Towards Application of Fiber Metal Laminates in Larger Aircraft,” Aircraft Eng. & Aerospace Technol., 71 (6) (1999), pp. 558–570.

    Article  Google Scholar 

  3. L.B. Vogeslang and A. Volt, “Development of Fibre Metal Laminates for Advanced Aerospace Materials,” J. of Mater. Processing Technol., 103 (2000), pp. 1–5.

    Article  Google Scholar 

  4. S. Krishnakumar, “Fiber Metal Laminates—The Synthesis of Metals and Composites,” Materials and Manufacturing Processing, 9 (2) (1995), pp. 295–354.

    Article  Google Scholar 

  5. A. Afaghi-Khatibi, L. Ye, and Y.W. Mai, “Hybrids and Sandwiches,” Comprehensive Composite Materials, 2 (2000), pp. 249–290.

    Google Scholar 

  6. E. Li and W.S. Johnson, “An Investigation into the Fatigue of Hybrid Titanium Composite Laminate,” J. of Comp. Technol., 20 (1) (1998), pp. 3–12.

    Article  Google Scholar 

  7. Dennis A. Burianek and S.M. Spearing, “Delamination Growth Face Sheet Seams in Cross-Ply Titanium/Graphite Hybrid Laminates,” Comp. Sci. and Tech., 61 (2000), pp. 261–269.

    Article  Google Scholar 

  8. H.J.M. Woerden, J. Sinke, and P.A. Hooimeijer, “Maintenance of GLARE Structures and GLARE as Riveted or Bonded Repair Material,” Appl. Comp. Mater., 10 (2003), pp. 307–329.

    Article  Google Scholar 

  9. C.A.J.R. Vermeeren et al., “Glare Design Aspects and Philosophies,” Appl. Comp. Mater., 10 (2003), pp. 257–276.

    Article  CAS  Google Scholar 

  10. J.W. Gunnink and L.B. Vogelesang, Proceedings of the 35th International SAMPE Symposium (Covina, CA: SAMPE, 1990), pp. 1708–1721.

    Google Scholar 

  11. J.W. Gunnink and L.B. Vogelesang, Proceedings of the 36th International SAMPE Symposium and Exhibition (Covina, CA: SAMPE, 1991), pp. 1509–1522.

    Google Scholar 

  12. R.J. Bucci and L.N. Muller, Treatise on Materials Science and Technology, Vol. 31A, ed. K. Vasudevan and R.D. Doherty (San Diego, CA: Academic Press Inc., 1989), pp. 295–322.

    Google Scholar 

  13. H.F. Wu, “Use of the Rule of Mixtures and Metal Volume Fraction for Mechanical Property Predictions of Fiber-Reinforced Aluminum Laminates,” J. of Mater. Sci., 29 (1994), pp. 4583–4591.

    Article  CAS  Google Scholar 

  14. M. Hangenbeek et al., “Static Properties of Fiber Metal Laminates,” Appl. Comp. Mater., 10 (2003), pp. 207–222.

    Article  Google Scholar 

  15. Guocai Wu and Jenn-Ming Yang, “Analytical Modeling and Numerical Simulation of Nonlinear Deformation of Hybrid Fiber Metal Laminates,” submitted to Modeling and Simulation in Mater. Sci. and Eng. (2004).

  16. M. Kawai et al., “Inelastic Deformation Behavior and Strength of Fiber-Metal Hybrid Composite: GLARE,” Int. J. Mech. Sci., 40 (2) (1998), pp. 183–198.

    Article  Google Scholar 

  17. M.A. Gegory, Proceedings of the 30th Annual CIM Conference of Metallurgists (Ottawa, Canada: CIM, 1991), p. 4410.

    Google Scholar 

  18. J.L. Verolme, Compressive Properties of GLARE, Report LR-666 (Delft, Netherlands: Delft University of Technology, 1991).

    Google Scholar 

  19. J. Cook and M.E. Donnellan, Tensile and Interlaminar Properties of GLARE Laminates, Report NADC-91087-60 (Warminster, PA: Naval Air Development Center, 1991).

    Google Scholar 

  20. E. Holleman, “Bearing Strength Prediction for Some GLARE Grades,” Memorandum M-683 (Delft, Netherlands: Delft University of Technology, November 1994).

    Google Scholar 

  21. W.J. Slager, “On the Bearing Strength of Fiber Metal Laminates,” J. of Comp. Mater., 6 (17) (1992), pp. 2542–2566.

    Article  Google Scholar 

  22. H.F. Wu, “An Investigation on the Bearing Test Procedure for Fiber-Reinforced Aluminum Laminates,” J. of Mater. Sci., 29 (1994), pp. 4592–4603.

    Article  CAS  Google Scholar 

  23. J.L. Teply, B. Diapolo and R.J. Bucci, Proceedings of the 19th International SAMPE Technical Conference (Covina, CA: SAMPE, 1987), pp. 353–359.

    Google Scholar 

  24. Y. Macheret and T.L. Teply, Proceedings of the Joint ASME/SES Applied Mechanics and Engineering Sciences Conference (NY: ASME, 1988), p. 53.

    Google Scholar 

  25. C.A.J.R. Vermeeren, L.B. Vogelesang, and J.W. Gunnink, Proceedings of the ESA Symposium on Space Applications of Advanced Structural Materials (European Space Agency, June 1990), p. 313

  26. J. Macheret and R.J. Bucci, “A Crack Growth Resistance Curve Approach to Fiber/Metal Laminate Fracture Toughness Evaluation,” Eng. Fract. Mech., 45 (6) (1993), pp. 729–739.

    Article  Google Scholar 

  27. C.A.J.R. Vermeeren, Residual Strength Predictions for Fiber Metal Laminates: The R-curve Approach, Report LR-717 (Delft, Netherlands: Delft University of Technology, 1993).

    Google Scholar 

  28. R.C. Alderliesten et al., “Fatigue and Damage Tolerance of Glare,” Appl. Comp. Mater., 10 (2003), pp. 223–242.

    Article  CAS  Google Scholar 

  29. P.A. Lagace and D.S. Cairns, Proceedings of the 33rd International SAMPE Symposium and Exhibition (Covina, CA: SAMPE, 1987), pp. 720–726.

    Google Scholar 

  30. C.A.J.R. Vermeeren, Blunt Notch Behavior of Fiber Metal Laminates: ARALL and GLARE, Report LR-617 (Delft, Netherlands: Delft University of Technology, January 1990).

    Google Scholar 

  31. E. Holleman and T.J. de Vries, “Residual Strength of Some Grades as Function of Specimen Geometry,” Memorandum M-717 (Delft, Netherlands: Delft University of Technology, 1995).

    Google Scholar 

  32. T. J. de Vries, “The Influence of the Constituent Properties on the Residual Strength of GLARE,” Appl. Comp. Mater., 8 (2001), pp. 263–277.

    Article  Google Scholar 

  33. C.A.J.R. Vereeren, “The Residual Strength of Fiber Metal Laminates: GLARE2 and GLARE3,” Proceedings of the 30th International SAMPE Technical Conference (Covina, CA: SAMPE, 1998), pp. 471–483.

    Google Scholar 

  34. P.K. Govindan Potti, B. Nageswararao, and V.K. Srivastava, “Notched Tensile Strength of Various Fiber Reinforced Metal Laminates,” Adv. Comp. Mater., 9 (3) (2000), pp. 187–206.

    Article  Google Scholar 

  35. G.D. Lawcock, L. Ye, and Y.-W. Mai, “Progressive Damage and Residual Strength of a Carbon Fiber Reinforced Metal Laminate,” J. Comp. Mater., 31 (1997), pp. 762–787.

    CAS  Google Scholar 

  36. Guocai Wu and Jenn-Ming Yang, “Blunt Notch Behavior of GLARE Laminates,” Proceedings of the 49th International SAMPE Symposium and Exhibition (Covina, CA: SAMPE, 2004).

    Google Scholar 

  37. Z.H. Jin and R.C. Batra, “Residual Strength of Centrally Cracked Metal/Fiber Composite Laminates,” Mater. Sci. and Eng., A216 (1996), pp. 117–124.

    Article  CAS  Google Scholar 

  38. A. Afaghi-Khatibi, L. Ye, and Y.-W. Mai, “An Effective Crack Growth Model for Residual Strength Evaluation of Composite Laminates with Circular Holes,” J. Comp. Mater., 30 (1996), pp. 142–163.

    CAS  Google Scholar 

  39. A. Afaghi-Khatibi, L. Ye, and Y.W. Mai, “Evaluation of Effective Crack Growth and Residual Strength of Fiber-Reinforced Metal Laminates with a Sharp Notch,” Comp. Sci. and Tech., 56 (1996), pp. 1079–1088.

    Article  CAS  Google Scholar 

  40. J.B. Young, J.G.N. Landry, and V.N. Cavoulacos, “Crack Growth and Residual Strength Characteristics of Two Grades of GLARE,” Composites Structures, 29 (1994), pp. 457–469.

    Article  Google Scholar 

  41. T. Takamatsu et al., “Fatigue Crack Growth Properties of a GLARE3-5/4 Fiber/Metal Laminate,” Eng. Fract. Mech., 63 (1999), pp. 253–272.

    Article  Google Scholar 

  42. P. Horst, and N. Ohrloff, “The Influence of Pre-Stretching and Temperature on the Static and Damage Tolerance Behavior of GLARE Material,” Proceedings of ICCM-IX, Vol. 4, ed. Antonio Miravete (1993), pp. 182–188.

  43. M. Papakyriacou, J. Schijve, and S.E. Stanzl-Tschegg, “Fatigue Crack Growth Behavior of Fiber-Metal Laminate GLARE-1 and Metal Laminate 7475 with Different Blunt Notches,” Fatigue & Fracture Eng. Mater. Struc., 20 (11) (1997), pp. 1573–1584.

    CAS  Google Scholar 

  44. M. Papakyriacou et al., “Fatigue Crack Growth in GLARE, Role of Glass Fibers,” Proc. of 10th Europ. Conf. Fract., Vol. 2 (West Midlands, UK: Warley, 1994), pp. 1193–1199.

    Google Scholar 

  45. A. Vasak, J. Polak, and V. Kozak, “Fatigue Crack Initiation in Fibre-Metal Laminate GLARE 2,” Mater. Sci. and Eng., A234–236 (1997), pp. 621–624.

    Article  Google Scholar 

  46. M. Kawai and A. Hachinohe, “Two-Stress Level Fatigue of Unidirectional Fiber-Metal Hybrid Composite: GLARE 2,” Inter. J. of Fatigue, 24 (2002), pp. 567–580.

    Article  CAS  Google Scholar 

  47. J.R. Yeh, “Fracture Crack Growth in Fiber-Metal Laminates,” Int. J. Solids Structures, 32 (14) (1995), pp. 2063–2075.

    Article  Google Scholar 

  48. L.B. Vogelesang, J. Schijve, and R. Fredell, “Fiber Metal Laminates: Damage Tolerant Aerospace Materials,” Case Studies in Manufacturing with Advanced Materials, Vol. 2, ed. A. Demaid and J.H.W. de Wit (Amsterdam: Elsevier, 1995), pp. 253–271.

    Google Scholar 

  49. R. Marissen, “Fatigue Mechanisms in ARALL, a Fatigue Resistant Hybrid Aluminum Aramid Composite Material,” Fatigue’ 87 (1987), pp. 1271–1279.

  50. R.O. Ritchie, W. Yu, and R.J. Bucci, “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-Tip Shielding from Crack Bridging,” Eng. Fract. Mech., 32 (1989), pp. 361–377.

    Article  Google Scholar 

  51. R. Marissen (Ph.D. thesis, Delft University of Technology, 1988).

  52. J. Schijve, “Development of Fiber-Metal Laminate (ARALL and GALE), New Fatigue Resistant Materials,” Fatigue 93, pp. 3–20.

  53. K.J. Cain and C.L. Tan “Numerical Modeling of Fiber-Bridging in Cracked Fiber-Metal Laminates,” J. Advanced Mater., 28 (2) (1997), pp. 8–15.

    CAS  Google Scholar 

  54. Y.J. Guo and X.R. Wu, “A Phenomenological Model for Predicting Crack Growth in Fiber-Reinforced Metal Laminates under Constant-Amplitude Loading,” Comp. Sci. and Tech., 59 (1999), pp. 1825–1831.

    Article  Google Scholar 

  55. D. J. Shim et al., “Fatigue Crack Growth Prediction of GLARE Hybrid Laminates,” Comp. Sci. and Eng., 63 (2003), pp. 1759–1767.

    CAS  Google Scholar 

  56. Y.J. Guo and X.R. Wu, “A Theoretical Model for Predicting Fatigue Crack Growth in Fiber-Reinforced Metal Laminates,” Fatigue & Fracture Eng. Mater. Struc., 21 (1998), pp. 1133–1145.

    Article  CAS  Google Scholar 

  57. Y.J. Guo and X.R. Wu, “Bridging Stress Distribution in Center-Cracked Fiber Reinforced Metal Laminate: Modeling and Experiment,” Eng. Fract. Mech., 63 (1999), pp. 147–163.

    Article  Google Scholar 

  58. A. Vlot, “Impact Properties of Fiber Metal Laminates,” Composites Eng., 3 (10) (1993), pp. 911–927.

    Article  Google Scholar 

  59. A. Vlot, “Impact Loading on Fiber Metal Laminates,” Int. J. Impact Eng., 18 (3) (1996), pp. 291–307.

    Article  Google Scholar 

  60. A. Vlot, E. Kroon, and G.L. Rocca, “Impact Response of Fiber Metal Laminates,” Key Eng. Mater., 141–143 (1998), pp. 235–276.

    Article  Google Scholar 

  61. A. Fahr et al., “Non-Destructive Evaluation Methods for Damage Assessment in Fiber-Metal Laminates,” Polymer Comp., 21 (2000), pp. 568–575.

    Article  CAS  Google Scholar 

  62. Guocai Wu and Jenn-Ming Yang, “Impact Behavior of GLARE Laminates,” Proceedings of the 36th International SAMPE Technical Conference (Covina, CA: SAMPE, November 2004).

    Google Scholar 

  63. J.F. Laliberte et al., “Post-Impact Fatigue Damage Growth in Fiber-Metal Laminates,” Inter. J. of Fatigue, 24 (2002), pp. 249–256.

    Article  CAS  Google Scholar 

  64. J.J. Homan, Compression after Impact, Report B2v-98-11 (Delft, Netherlands: Delft University of Technology, December 1998).

    Google Scholar 

  65. T. Beumler et al., “Environmental Influence on GLARE Riveted Joints,” Proceedings of the 46th International SAMPE Symposium, Vol. 35, No. 2 (Covina, CA: SAMPE, 2001), pp. 389–401.

    Google Scholar 

  66. M.F.H.C. Boertien, “Strength of GLARE after Exposure to Moisture” (Thesis report, Faculty of Aerospace Engineering, Delft University of Technology, 1996).

  67. B. Borgonje and M.S. Ypma, “Long Term Behavior of GLARE,” Appl. Comp. Mater., 10 (2003), pp. 243–255.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact J.-M. Yang, University of California, Department of Materials Science and Engineering, 6532 Boelter Hall, Los Angles, CA 90024; (310) 825-2758; fax (310) 206-7353; e-mail jyang@seas.ucla.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Yang, J.M. The mechanical behavior of GLARE laminates for aircraft structures. JOM 57, 72–79 (2005). https://doi.org/10.1007/s11837-005-0067-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0067-4

Keywords

Navigation