Skip to main content
Log in

The carbothermic route to magnesium

  • Overview
  • Archaeotechnology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The carbothermic reduction of magnesia to produce magnesium offers the potential of a lower energy and higher productivity route for metal production compared to existing industrial routes. The reaction of magnesia and carbon produces a magnesium and carbon monoxide vapor. Slow cooling of that vapor will allow the reaction to quickly revert and the prevention of this reversion reaction is a major technical challenge. Two main approaches can be taken to prevent reversion and allow recovery of the metal product: rapid quenching of the vapor and dissolving the magnesium directly in a suitable metal solvent before reversion can occur. The commercial viability of either carbothermic route to magnesium is closely connected to the physical chemistry of each system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Luo, Magnesium Technology 2000, ed. H.I. Kaplan, J. Hryn, and B. Clow (Warrendale, PA: TMS, 2000), pp. 89–98.

    Google Scholar 

  2. “The Global Magnesium Industry,” JOM, 57 (8) (2005), p. 4.

  3. R. Brown, Australian Journal of Mining (July/August 2005), pp. 22–24.

  4. G.J. Kipouras and D.R. Sadoway, Advances in Molten Salt Chemistry 6 (Amsterdam, Netherlands: Elsevier, 1987), pp. 127–209.

    Google Scholar 

  5. R. Koenig, G. Baker, and B. Goebel, Proceedings of Green Processing Conference (Parkville, Australia: Aus. I.M.M., 2002), pp. 85–89.

    Google Scholar 

  6. S. Ramakrishnan and P. Koltun, Resources Conservation and Recycling 2004, 42 (2004), pp. 49–64.

    Article  Google Scholar 

  7. HSC Chemistry for Windows, Version 3.0 (Pori, Finland: Outokumpu Research Oy, 1997).

  8. O. Knofler and H. Ledderboge, German Patent 493938 *6 February 1889).

  9. R.C. Kirk, U.S. patent 2,257,910 (7 October 1941).

  10. F. Hansging, The Iron Age (18 November 1943), pp. 56–63.

  11. T.A. Duncan, “Production of Magnesium by the Carbothermic Process at Permanente,” Trans. of AIMME, 159 (1944), pp. 308–314.

    Google Scholar 

  12. F. Hansgirg, U.S. patent 2,582,119 (8 January 1952).

  13. F. Hansgirg, U.S. patent 2,582,120 (8 January 1952).

  14. F. Hori, U.S. patent 4,200,264 (29 April 1980).

  15. J.M. Avery, European Patent Appl. 0 075 836 (6 April 1983).

  16. G.F. Warren and A.M. Cameron, European Patent Appl. 84201741.0 (3 July 1985).

  17. A.M. Cameronetal, Proceedings of Pyrometallurgy '87 (London, U.K.: Inst. of Mining and Metallurgy, 1987), pp. 195–222.

    Google Scholar 

  18. R. Winand et al., Trans. Instn. Min. Metall. (Sect. C: Mineral. Extr. Metall.), 99 (May–August 1990), pp. C105–112.

    CAS  Google Scholar 

  19. J. Engell, J.S. Frederiksen, and K.A. Nielsen, U.S. patent 5,803,947 (8 September 1998).

  20. A. Donaldson and R.A. Cordes, JOM, 57 (4) (2005), pp. 58–63.

    Article  CAS  Google Scholar 

  21. R.R. Odle and A.W. McClaine, (June 2005), www. metallurgicalviability.com.

  22. R.N. Anderson and N.A.D. Parlee, J. Vac. Sci. Technology, 13 (1) (1976), pp. 526–529.

    Article  CAS  Google Scholar 

  23. C.A. Eckert, R.B. Irwin, and J.S. Smith, Met. Trans. B, 14B (Sept. 1983), p. 451–458.

    CAS  Google Scholar 

  24. C.A. Eckert, R.B. Irwin, and C.W. Graves, Ind. Eng. Che. Process Des. Dev., 29 (1984), pp. 210–217.

    Article  Google Scholar 

  25. T.H. McConica, U.S. patent 2,391,727 (25 December 1945).

  26. Geoffrey Brooks et al., Magnesium Technology 2006, ed. A.A. Luo, N.R. Neelameggham, and R.S. Beals (Warrendale PA: TMS, 2006), pp. 25–33.

    Google Scholar 

  27. M.N.H. Khan et al., EPD Congress 2006, ed. Stanley M. Howard et al. (Warrendale PA: TMS, 2006), pp. 699–709.

    Google Scholar 

  28. M. Prakash et al., Proceedings of Fourth International Conference on CFD in the Oil and Gas Metallurgical and Process Industries (Trondheim, Norway: SINTEF/NTNU, June 2005).

    Google Scholar 

  29. M.N. Noui-Mehidi et al., EPD Congress 2005, ed. M.E. Schlesinger (Warrendale PA: TMS, 2005), pp. 655–661.

    Google Scholar 

  30. P.W. Cleary et al., EPD Congress 2005, ed. M.E. Schlesinger, (Warrendale PA: TMS, 2005), pp. 647–654.

    Google Scholar 

  31. L. Rongti et al., Thermochim. Acta, 390 (2002), pp. 145–151.

    Google Scholar 

  32. L. Rongti, P. Wei, and M. Sano, Metall. Mater. Trans. B, 34B (2003), pp. 433–437.

    Article  CAS  Google Scholar 

  33. A.M. Cameron, D.L. Canham, and V.G. Aurich, JOM, 42 (4) (1990), pp. 46–47.

    CAS  Google Scholar 

  34. A. Abbud-Madrid et al., Journal of Propulsion and Power, 17 (4) (July–August 2001), pp. 852–859.

    Article  CAS  Google Scholar 

  35. E. Ya. Shafirovich and U.I. Goldshleger, Combustion Science and Technology, 84 (1992), pp. 33–43.

    Article  CAS  Google Scholar 

  36. E.Ya. Shafirovich, A.A. Shiryaev, and U.I. Goldshleger, Journal of Propulsion and Power 9 (2) (March–April 1993), pp. 197–203.

    CAS  Google Scholar 

  37. E.Ya. Shafirovich and U.I. Goldshleger, Fizika Goreniya I Vzryva, 36 (2) (March–April 2000), pp. 67–73.

    Google Scholar 

  38. F.T. Ferguson, J.A. Nuth III, and L.U. Lilleleht, J. Chem. Phys., 104 (9) (1 March 1996), pp. 3205–3210.

    Article  CAS  Google Scholar 

  39. G.S. Springer, Advances in Heat Transfer, 14 (1978), pp. 281–346.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, G., Trang, S., Witt, P. et al. The carbothermic route to magnesium. JOM 58, 51–55 (2006). https://doi.org/10.1007/s11837-006-0024-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0024-x

Keywords

Navigation