Skip to main content
Log in

Nanoengineering opens a new era for tungsten as well

  • Research Summary
  • Tungsten: Today's Technology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

For the past century, tungsten has been exploited for numerous applications due to its unique properties, including its extremely high melting point, mass density, and mechanical strength. One specific potential application of tungsten (owing to its high mass density and strength) is the replacement of depleted uranium within kinetic energy antiarmor penetrators. Strenuous efforts in this direction have had limited success. However, nanoengineering has been applied recently to tailor the microstructure and properties of tungsten, leading to dramatic improvement with regard to this application. This paper provides some recent results on nanoengineered tungsten and discusses the underlying principles. It appears that nanoengineering is opening a new era for tungsten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Feynman, “There is Plenty of Roomat the Bottom”, Engineering & Science (Pasadena, CA: Caltech Public Relations, 1959), cited 2006; www.zyvex.com/nanotech/feynman.html.

    Google Scholar 

  2. E.O. Hall, “The Deformation and Ageing of Mild Steel: III. Discussion of Results”, P. Phys. Soc. B., 64 (1951), pp. 747–753.

    Article  Google Scholar 

  3. N.J. Petch, “The Cleavage Strength of Polycrystals,” J. Iron and Steel Institute, 174 (1953), pp. 25–28.

    CAS  Google Scholar 

  4. C.C. Koch, “Optimization of Strength and Ductillity in Nanocrystalline and Ultrafine Grained Metals,” Scripta Mater., 49 (2003), pp. 657–662.

    Article  CAS  Google Scholar 

  5. E. Ma, “Instabilities and Ductility of Nanocrystalline and Ultrafine-Grained Metals,” Scripta Mater. 49 (2003), pp. 663–668.

    Article  CAS  Google Scholar 

  6. E. Ma, “Controlling Plastic Instability,” Nature Materials, 2 (2003), pp. 7–8.

    Article  CAS  Google Scholar 

  7. K.M. Youssef et al., “Ultratough Nanocrystalline Copper with a Narrow Grain Size Distribution,” Appl. Phys. Lett., 85 (6) (2004), pp. 929–931.

    Article  CAS  Google Scholar 

  8. K.M. Youssef et al., “Ultrahigh Strength and High Ductility of Bulk Nanocrystalline Copper,” Appl. Phys. Lett., 87 (9) (2005), p. 091904.

    Article  CAS  Google Scholar 

  9. S. Cheng et al., “Tensile Properties of In Situ Consolidated Nanocrystalline Cu,” Acta Mater., 53 (5) (2005), pp. 1521–1533.

    Article  CAS  Google Scholar 

  10. Y.M. Wang and E. Ma, “Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal,” Acta Mater., 52 (2004), pp. 1699–1709.

    Article  CAS  Google Scholar 

  11. Y.M. Wang et al., “High Tensile Ductility in a Nanostructured Metal, Nature, 419 (2002), pp. 912–915.

    Article  CAS  Google Scholar 

  12. E. Ma, “Eight Routes to Improve the Tensile Ductility of Bulk Nanostructured Metals and Alloys,” JOM, 58 (4) (2006), pp. 49–53.

    Article  CAS  Google Scholar 

  13. C.C. Koch and J. Naraya, “The Inverse, Hall-Petch Effect—Factor Artifact?” Structure and Mechanical Properties of Nanophase Materials—Theory and Computer Simulations vs. Experiments (Warrendale, PA, MRS, 2001), ID#37343.

    Google Scholar 

  14. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, “Bulk Nanostructured Materials from Severe Plastic Deformation,” Prog. Mater. Sci., 45 (2000), pp. 103–189.

    Article  CAS  Google Scholar 

  15. D.B. Witkin and E.J. Lavernia, “Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling,” Prog. Mater. Sci., 51 (2006), pp. 1–60.

    Article  CAS  Google Scholar 

  16. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical Behavior of Nanocrystalline Metals and Alloys,” Acta Mater., 51 (2003), pp. 5743–5774.

    Article  CAS  Google Scholar 

  17. Q. Wei et al., “Evolution and Microstructure of Shear Bands in Nanostructured Fe” Appl. Phys. Lett., 81 (7) (2002), pp. 1240–1242.

    Article  CAS  Google Scholar 

  18. Q. Wei et al., “Microstructure and Mechanical Properties of Tantalum after Equal Channel Angular Extrusion (ECAE),” Mater Sci. Eng. A, 358 (1–2) (2003), pp. 266–272.

    Google Scholar 

  19. Q. Wei et al., “Adiabatic Shear Banding in Ultrafine Grained Fe Processed by Severe Plastic Deformation,” Acta Mater. 52 (7) (2004), pp. 1859–1869.

    Article  CAS  Google Scholar 

  20. Q. Wei et al., “Nano-Structured Vanadium: Processing and Mechanical Properties under Quasi-Static and Dynamic Compression,” Scripta Materialia, 50 (3) (2004), pp. 359–364.

    Article  CAS  Google Scholar 

  21. Q. Wei et al., “Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: fcc versus bcc Metals,” Mater. Sci. Eng. A, 381 (1–2) (2004), pp. 71–79.

    Google Scholar 

  22. Y.J. Wei and L. Anand, “Grain Boundary Sliding and Separation in Polycrystalline Metals: Application to Nanocrystalline fcc Metals,” J. Mechanics and Physics of Solids, 52 (2004), pp. 2584–2616.

    Article  CAS  Google Scholar 

  23. Q. Wei et al., “Plastic Flow Localization in Bulk-Tungsten with Ultrafine Microstructure,” Appl. Phys. Lett., 86 (10) (2005), p. 101907.

    Article  CAS  Google Scholar 

  24. Q. Wei et al., “Mechanical Behavior and Dynamic Failure of High-Strength Ultrafine Grained Tungsten under Uniaxial Compression,” Acta Mater., 54 (1) (2006), pp. 77–87.

    CAS  Google Scholar 

  25. T.R. Malow and C.C. Koch, “Mechanical Properties in Tension of Mechanically Attrited Nanocrystalline Iron by the Use of Miniaturized Disk Bend Test,” Acta Mater., 46 (18) (1998), pp. 6459–6473.

    Article  CAS  Google Scholar 

  26. T.R. Malow et al., “Compressive Mechanical Behavior of Nanocrystalline Fe Investigated with an Automated Ball Indentation Technique,” Mater. Sci. Eng. A., 252 (1998), pp. 36–43.

    Article  Google Scholar 

  27. J.E. Carsley et al., “Mechanical Behavior of Bulk Nanostructured Iron Alloy,” Metall. Mater. Trans. A, 29A (1998), pp. 2261–2271.

    Article  CAS  Google Scholar 

  28. D. Jia, K.T. Ramesh, and E. Ma, “Failure Mode and Dynamic Behavior of Nanophase Iron under Compression,” Scripta Mater., 42 (2000), pp. 73–78.

    CAS  Google Scholar 

  29. D. Jia, K.T. Ramesh, and E. Ma, “Effects of Nano-crystalline and Ultrafine Grain Sizes on Constitutive Behavior and Shear Bands in Iron,” Acta Mater., 51 (2), (2003), pp. 3495–3590.

    Article  CAS  Google Scholar 

  30. L.S. Magness, “An Overview of the Penetration Performances of Tungsten and Depleted Uranium Alloy Penetrators: Ballistic Performances and Metallographic Examinations, Ballistics 2000 (Lancaster, PA: DEStech Publications Inc., 2002), CD-ROM.

    Google Scholar 

  31. E. Lassner and W.-D. Schubert, Tungsten-Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds (Dordrecht, the Netherlands: Kluwer-Academic/Plenum Publishers, 1998).

    Google Scholar 

  32. B.C. Allen, D.J. Maykuth, and R.I. Jaffee, “The Recrystallization and Ductile-Brittle Transition Behavior of Tungsten,” J. Institute of Metals, 90 (1961), pp. 120–128.

    CAS  Google Scholar 

  33. Q. Wei et al., “Microstructure and Mechanical Properties of Super-Strong Nanocrystalline Tungsten Processed by High-Pressure Torision” Acta Mater., 54 (2006), in press.

  34. A.P. Zhilyaev et al., “Experimental Parameters Influencing Grain Refinement and Microstructural Evolution during High-Pressure Torsion,” Acta Mater., 51 (2003), pp. 753–765.

    Article  CAS  Google Scholar 

  35. P.S. Follansbee, “High Strain Rate Compression Testing,” ASM Metals Handbook (Metals Park, OH, American Society of Metals, 1985), p. 190.

    Google Scholar 

  36. D. Jia and K.T. Ramesh, “A Rigo rous Assessment of the Benefits of Miniaturization in the Kolsky Bar System” Experimental Mechanics, 44 (5) (2004), pp. 445–454.

    Article  Google Scholar 

  37. R.Z. Valiev, V.Y. Gertsman, and R. Kaibyshev, “Grain Boundary Structure and Properties under External Influence,” Physica Status Solidi A, 97 (1986), pp. 11–56.

    Article  CAS  Google Scholar 

  38. R.Z. Valiev, “Nanomaterial Advantage,” Nature, 419 (2002), pp. 887–889.

    Article  CAS  Google Scholar 

  39. A.A. Nazarov, A.E. Romanov, and R.Z. Valiev, “On the Structure, Stress Fields and Energy of Nonequilibrium Grain Boundaries,” Acta Metall. Mater., 41 (4) (1993), pp. 1033–1040.

    Article  CAS  Google Scholar 

  40. J.W. Christian, “Some Surprising Features of the Plastic-Deformation of Body-Centered Cubic Metals and Alloys,” Metall. Trans. A, 14A (1983), p. 1237.

    CAS  Google Scholar 

  41. P.J. Blau, R.L. Martin, and E.S. Zanoria, “Effects of Surface Grinding Conditions on the Reciprocating Friction and Wear Behavior of Silicon Nitride,” Wear, 203 (1997), pp. 648–657.

    Article  Google Scholar 

  42. D. Tabor, The Hardness of Metals, (Oxford, U.K.: Clarendon Press, 1951).

    Google Scholar 

  43. A.M. Lennon and K.T. Ramesh, “The Thermoviscoplastic Response of Polycrystalline Tungsten in Compression,” Mater. Sci. Eng. A., 276 (2000), pp. 9–21.

    Article  Google Scholar 

  44. A.S. Argon and S.R. Maloof, “Plastic Deformation of Tungsten Single Crystals at Low Temperature,” Acta Metallurgica, 14 (1966), pp. 1449–1462.

    Article  CAS  Google Scholar 

  45. T. Watanabe, “An Approach to Grain Boundary Design for Strong and Ductile Polycrystals,” Res. Mechanica, 11 (1984), pp. 47–84.

    CAS  Google Scholar 

  46. R.Z. Valiev et al., “Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation” J. Mater. Res., 17 (1) (2002), pp. 5–8.

    CAS  Google Scholar 

  47. P. Gumbsch et al., “Controlling Factors for the Brittleto-Ductile Transition in Tungsten Single Crystals,” Science, 282 (5392) (1998), pp. 1293–1295.

    Article  CAS  Google Scholar 

  48. T.W. Wright, The Physics and Mathematics of Adiabatic Shear Bands (Oxford, U.K.: Cambridge Press, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q., Ramesh, K.T., Schuster, B.E. et al. Nanoengineering opens a new era for tungsten as well. JOM 58, 40–44 (2006). https://doi.org/10.1007/s11837-006-0081-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0081-1

Keywords

Navigation