Skip to main content
Log in

Research progress in TiB2 wettable cathode for aluminum reduction

  • Aluminum Processing
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium diboride wettable cathodes are regarded as ideal for aluminum reduction because of their excellent wettability with molten aluminum. The TiB2 inert wettable cathode materials for aluminum reduction may be divided into three groups: pure TiB2 ceramic cathode, TiB2 composite cathode, and TiB2 coating. This paper briefly describes international research progress on TiB2 inert wettable cathodes as well as problems faced, and concentrates on the activities of Central South University, Changsha, China, in researching the ambient-temperature solidified TiB2 cathode coating. At the same time, the results of the coating applied in many aluminum smelters in China are presented, and the pattern of cathode surface of 160 kA cells coated with the ambient-temperature-solidified TiB2 cathode coating after one year operation is discussed in comparison with the normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong-yu Yang, editor, Light Metals Metallurgy (in Chinese) (Beijing: Metallurgical Press of Industry, 2006), pp. 179–180.

    Google Scholar 

  2. K. Billehaug, Aluminum, 54(2) (1980), pp. 642–718.

    Google Scholar 

  3. Ye-xiang Liu, Light Metals, 10(5) (2001), pp. 26–29.

    Google Scholar 

  4. S.K. Das, P.A. Foster, and G.J. Hildeman, U.S. patent 4,308,114 (7 May 1981).

  5. L.G. Boxall and A.V. Cooke, Light Metals, 5(3) (1984), pp. 573–588.

    Google Scholar 

  6. A.V. Cooke and W.M. Buchta, Light Metals, 10(4) (1985), pp. 545–566.

    Google Scholar 

  7. R. Gonzales, M. Barandika, and D. Ona, Matl. Sci. and Eng. A, 216(6) (1996), pp. 185–192.

    Article  Google Scholar 

  8. J.R. Payne, U.S. patent 4,093,524 (6 June 1978).

  9. H.I. Kaplan, U.S. patent Defensive Publication T993,002 (1 October 1980).

  10. H.I. Kaplan, U.S. patent 4,333,813 (8 June 1982).

  11. Curtis J McMinn, Light Metals, 20(7) (1991), pp. 419–425.

    Google Scholar 

  12. H. Zhang, V. de Nora, and J.A. Sekhar, Light Metals, 26(8) (1994), pp. 412–415.

    Google Scholar 

  13. N.E. Richards et al., U.S. patent 3,328,280 (27 June 1967).

  14. Huimin Lu et al., Light Metals 2006, ed. Travis J. Galloway (Warrendale, PA: TMS, 2006), pp. 687–690.

    Google Scholar 

  15. J. Xue and H.A. Øye, Light Metals 1992, ed. Euel R. Cutshall (Warrendale, PA: TMS, 1992), pp. 773–778.

    Google Scholar 

  16. Martin Dionne, Gilles L. Esperance, and Amir Mirtchi, Light Metals 1999, ed. C. Edward Eckert (Warrendale, PA: TMS, 1999), pp. 389–394.

    Google Scholar 

  17. S.C. Raj, M. Skyllas-Kazacos, Electrochimica Acta, 5(38) (1993), pp. 663–669.

    Article  Google Scholar 

  18. A. Tabereaux et al., Light Metals 1998, ed. B.J. Welch (Warrendale, PA: TMS, 1998), pp. 257–264.

    Google Scholar 

  19. Jilai Xue, Qingsheng Liu, and Wenli Ou, Light Metals 2007, ed. Morten Sørlie (Warrendale, PA: TMS, 2007), pp. 1061–1066.

    Google Scholar 

  20. Yaowu Wang et al., Light Metals 2007, ed. Morten Sørlie (Warrendale, PA: TMS, 2007), pp. 1067–1070.

    Google Scholar 

  21. H.O. Pierson and A.W. Mullendore, Thin Solid Film, 95(2) (1982), pp. 99–104.

    Article  CAS  Google Scholar 

  22. A.J. Becker and J.H. Blanks, Thin Solid Films, 119(7) (1984), pp. 241–246.

    Article  CAS  Google Scholar 

  23. U. Fastner et al., Journal of Alloys and Compounds, 31(6) (2007), pp. 1–4.

    Google Scholar 

  24. S.V. Devyatkin and G. Kaptay, Journal of Solid State Chemistry, 154(7) (2000), pp. 107–109.

    Article  CAS  Google Scholar 

  25. Huimin Lu et al., Light Metals 2005, ed. H. Kvande (Warrendale, PA: TMS, 2005), pp. 785–788.

    Google Scholar 

  26. Katharina Seitz and Frank Hiltmann, in Ref. 18, pp. 379–383.

    Google Scholar 

  27. Frank Hiltmann and Katharina Seitz, in Ref. 18, pp. 385–390.

    Google Scholar 

  28. H.A. Øye et al., Light Metals 1997, ed. Reidar Huglen (Warrendale, PA: TMS, 1997), pp. 279–286.

    Google Scholar 

  29. Jean-Paul Huni et al., U.S. patent 0,046,605 A1 (29 November 2001).

  30. J.A. Sekhar, Jean-Jacques Duruz, and J.J. Liu, U.S. patent 6,783,655B2 (31 August 2004).

  31. T.T. Nguyen, Jean-Jacques Duruz, and V. de Nora, U.S. patent 0,224,220 A1 (4 December 2003).

  32. J A. Sekhar et al., in Ref. 18, pp. 605–615.

    Google Scholar 

  33. G.D. Brown et al., Proceedings of the 6th Australian Aluminum Smelting Workshop, ed. B.J. James (Kensington, NSW, Australia: University of New South Wales, 1998), pp. 499–508.

    Google Scholar 

  34. M.O. Ibrahiem, T. Foosnæs, and H.A. Øye, Light Metals 2006, ed. T.J. Galloway (Warrendale, PA: TMS, 2006), pp. 691–696.

    Google Scholar 

  35. M.O. Ibrahiem, T. Foosnæs, and H.A. Øye, Light Metals 2007, ed. Morten Sørlie (Warrendale, PA: TMS, 2007), pp. 1041–1046.

    Google Scholar 

  36. H.-Z. Wand et al., Light Metals (1993), pp. 26–31.

  37. Yexiang Liu et al., Light Metals 1992, ed. Euel R. Cutshall (Warrendale, PA: TMS, 1992), pp. 427–429.

    Google Scholar 

  38. Xian-an Liao et al., in Ref. 18, pp. 685–688.

    Google Scholar 

  39. Qing-yu Li “Development and Industrial Application of Wettable Inert TiB2 Cathodic Composite Coating for Aluminum Reduction” (Ph.D. thesis, Central South University, 2003).

  40. Bo Ye, “Preparation and Properties Study of Wettable Thick TiB2 Cathode Coating for Drained Aluminum Reduction Cell” (M.D. thesis, Central South University, 2005).

  41. Xiao-jun Lu, “Study on the Electrical Conductivity, Compressive Strength and Resistance to Sodium Penetration of TiB2-C Composite Cathode Coating” (M.D. thesis, Central South University, 2006).

  42. Qing-yu Li et al., Journal of Central South University of Technology, 34(1) (2003), pp. 24–26.

    Google Scholar 

  43. Jing Fang, “Properties Study and Preparation of Wettable Inert TiB2/C Composite Cathode Material for Aluminum Reduction” (M.D. thesis, Central South University, 2004).

  44. Qingyu Li et al., Light Metals 2005, ed. Halvor Kvande (Warrendale, PA: TMS, 2005), pp. 789–791.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Lü, Xj., Lai, Yq. et al. Research progress in TiB2 wettable cathode for aluminum reduction. JOM 60, 32–37 (2008). https://doi.org/10.1007/s11837-008-0104-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0104-1

Keywords

Navigation