Skip to main content
Log in

Microstructure informatics using higher-order statistics and efficient data-mining protocols

  • Enabling ICME
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Microstructure informatics is a critical building block of the integrated computational materials engineering infrastructure. Accelerated design and development of new advanced materials and their successful insertion in engineering practice are largely hindered by the lack of a rigorous mathematical framework for the robust generation of microstructure informatics relevant to the specific application. This paper describes a set of computational protocols that are capable of accelerating significantly the process of building the needed microstructure informatics for a targeted application. These novel protocols have several advantages over the current practice in the field: they allow archival, real-time searches, and quantitative comparisons of different instantiations within large microstructure datasets; they allow for automatic identification and extraction of microstructure features or metrics of interest from very large datasets; they allow for establishment of reliable microstructure-property correlations using objective measures of microstructure; and they provide precise quantitative insights on how the local neighborhood influences the localization of macroscale loading and/or the local evolution of microstructure leading to development of robust, scale-bridging, microstructure-property-processing linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (National Research Council. Committee on Integrated Computational Materials, Washington, D.C., National Academies Press, 2008).

  2. D.T. Fullwood et al., Progress in Materials Science, 55(6) (2010), pp. 477–562.

    Article  CAS  Google Scholar 

  3. H. Bunge, Texture Analysis in Materials Science (London, Boston: Butterworths, 1982).

    Google Scholar 

  4. S.M. Schmid et al., Tectonophysics, 78(1–4) (1981), pp. 101–117.

    Article  Google Scholar 

  5. S. Torquato, Random Heterogeneous Materials (New York, Springer-Verlag, 2002).

    Google Scholar 

  6. A.M. Gokhale, Microscopy and Microanalysis, 10(Supplement S02) (2004), pp. 736–737.

    Google Scholar 

  7. B.L. Adams et al., Materials Science Forum Proceedings of the 10th International Conference on Textures of Materials, Part 2, 157–6 (pt 1) (1994), pp. 287–294.

    Google Scholar 

  8. D.T. Fullwood et al., Acta Materialia, 56(5) (2008), pp. 942–948.

    Article  CAS  Google Scholar 

  9. S.R. Niezgoda, “Stochastic Representation of Microstructure via Higher-Order Statistics: Theory and Application” (Ph.D. dissertation, Drexel University, Philadelphia, PA, 2010).

    Google Scholar 

  10. D. Blavette et al., Nature, 363(6428) (1993), pp. 432–435.

    Article  CAS  Google Scholar 

  11. E. Maire et al., Advanced Engineering Materials, 3(8) (2001), pp. 539–546.

    Article  CAS  Google Scholar 

  12. H.N. Chapman et al., J. Opt. Soc. Am. A, 23(5) (2001), pp. 1179–1200.

    Article  Google Scholar 

  13. S.R. Niezgoda and S.R. Kalidindi, CMC: Computers, Materials, & Continua, 14(2) (2009), pp. 79–89.

    Google Scholar 

  14. P.V.C. Hough, “Method and Means for Recognizing Complex Patterns,” U.S. patent 3,069,654 (1962).

  15. P. Kierkegaard, Machine Vision and Applications, 5(4) (1992), pp. 249–263.

    Article  Google Scholar 

  16. D.H. Ballard, Pattern Recognition, 13(2) (1981), pp. 111–122.

    Article  Google Scholar 

  17. B. Lu and S. Torquato, Physical Review A, 45(2) (1992), p. 922.

    Article  CAS  Google Scholar 

  18. V. Sundararaghavan and N. Zabaras, Acta Materialia, 52(14) (2004), pp. 4111–4119.

    Article  CAS  Google Scholar 

  19. V. Sundararaghavan and N. Zabaras, Comp. Mater. Science, 32 (2005), pp. 223–239.

    Article  Google Scholar 

  20. H.K.D.H. Bhadeshia, Statistical Analysis and Data Mining, 1(5) (2009), pp. 296–305.

    Article  Google Scholar 

  21. S.R. Kalidindi et al., CMC: Computers, Materials, & Continua, 17(2) (2010), pp. 103–126.

    Google Scholar 

  22. T. Fast et al., Acta Materialia, 59(2) (2011), pp. 699–707.

    Article  CAS  Google Scholar 

  23. G. Landi et al., Acta Materialia, 58(7) (2010), pp. 2716–2725.

    Article  CAS  Google Scholar 

  24. E. Kröner, Modeling Small Deformation in Polycrystals, ed. J. Gittus and J. Zarka (New York, Elsevier, 1986), pp. 229–291.

    Google Scholar 

  25. G. Milton, The Theory of Composites (Cambridge, MA: Cambridge University Press, 2002).

    Book  Google Scholar 

  26. C.L. Nikias and A.P. Petropulu, Higher-order Spectra Analysis: A Nonlinear Signal Processing Framework (Englewood Cliffs, NJ: PTR Prentice Hall, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya R. Kalidindi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalidindi, S.R., Niezgoda, S.R. & Salem, A.A. Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63, 34–41 (2011). https://doi.org/10.1007/s11837-011-0057-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0057-7

Keywords

Navigation