Skip to main content
Log in

An integrated computational tool for precipitation simulation

  • Modeling Solidification and Heat Treatment
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cao et al., Calphad, 33(2) (2009), pp. 328–342.

    Article  CAS  Google Scholar 

  2. W. Cao et al., “Precipitation Modeling of Multi-Component Alloys,” submitted to Acta Materialia (2011).

  3. S.L. Chen et al., Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 26(2) (2002), pp. 175–188.

    CAS  Google Scholar 

  4. M. Avrami, The Journal of Chemical Physics, 7(12) (1939), pp. 1103–1112.

    Article  CAS  Google Scholar 

  5. M. Avrami, The Journal of Chemical Physics, 8(2) (1940), pp. 212–224.

    Article  CAS  Google Scholar 

  6. M. Avrami, The Journal of Chemical Physics, 9(2) (1941), pp. 177–184.

    Article  CAS  Google Scholar 

  7. W.A. Johnson and R.F. Mehl, Trans. Am. Inst. Min. Metall. Eng., 135 (1939), pp. 416–458.

    Google Scholar 

  8. A.N. Kolmogorov, Izvestia Academy of Science, SSSR, Ser. Math, 3 (1937), pp. 355–360.

    Google Scholar 

  9. J.S. Langer and A.J. Schwartz, Physical Review A, 21(3) (1980), pp. 948–958.

    Article  CAS  Google Scholar 

  10. R. Kampmann and R. Wagner, Decomposition of Alloys: The Early stages, ed. P. Haasen et al. (Oxford: Pergamon Press, 1984), pp. 91–103.

    Google Scholar 

  11. A. Deschamps and Y. Brechet, Acta Materialia, 47(1) (1998), pp. 293–305.

    Article  Google Scholar 

  12. V. Gerold, Dislocations in Solids (Amsterdam: North Holland, 1979).

    Google Scholar 

  13. O.R. Myhr, Ø. Grong, and S.J. Andersen, Acta Materialia, 49(1) (2001), pp. 65–75.

    Article  CAS  Google Scholar 

  14. J. Friedel, Dislocations (Oxford: Pergamon, 1964).

    Google Scholar 

  15. L. Kaufman and H. Bernstein, Computer Calculation of the Phase Diagrams with Special Reference to Refractory Materials (New York: Academic Press, 1970).

    Google Scholar 

  16. Y.A. Chang et al., Progress in Materials Science, 49(3–4) (2004), pp. 313–345.

    Article  CAS  Google Scholar 

  17. Ø. Grong, Metallurgical Modelling of Welding, 2nd ed. (London: The Institute of Materials, 1997).

    Google Scholar 

  18. K.S. Wu et al., Superalloys 2008, ed. Roger Reed et al. (Warrendale, PA: TMS, 2008), pp. 923–940.

    Google Scholar 

  19. J.D. Robson, Materials Science and Technology, 20 (2004), pp. 441–448.

    Article  CAS  Google Scholar 

  20. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 19 (1961), p. 35.

    Article  Google Scholar 

  21. C. Wagner, Z. Elektrochem., 65 (1961), p. 581.

    CAS  Google Scholar 

  22. X. Xie et al., Superalloys 718, 625, 706 and Derivatives, ed. E.A. Loria (Warrendale, PA: TMS, 2005), pp. 193–202.

    Google Scholar 

  23. A. Baldan, J. Materials Science, 37 (2002), pp. 2171–2202.

    Article  CAS  Google Scholar 

  24. C.K. Sudbrack, “Decomposition Behavior in Model Ni-Al-Cr-X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale” (Ph.D Thesis, Department of Materials Science & Engineering. 2004, Northwestern University: Evanston, IL).

    Google Scholar 

  25. A. Oradei-Basile and J.F. Radavich, Superalloys 718, 625 and Various Derivatives, ed. E.A. Loria (Warrendale, PA: TMS, 1991), pp, 325–336.

    Google Scholar 

  26. W.F. Miao and D.E. Laughlin, Scripta Materialia, 40(7) (1999, pp. 873–878.

    Article  CAS  Google Scholar 

  27. S.J. Andersen et al., Acta Materialia, 46(9) (1998), pp. 3283–3298.

    Article  CAS  Google Scholar 

  28. W.A. Anderson, Precipitation from Solid Solution (Metals Park, OH: American Society for Metals, 1959).

    Google Scholar 

  29. J. Guo et al., “Prediction of Microstructure and Mechanical Properties in Aluminum Castings after Heat Treatment” (Paper presented at the TMS 2010 Annual Meeting & Exhibition, Seattle, WA, February 14–18, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Zhang, F., Chen, S.L. et al. An integrated computational tool for precipitation simulation. JOM 63, 29–34 (2011). https://doi.org/10.1007/s11837-011-0106-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0106-2

Keywords

Navigation