Skip to main content
Log in

A full-field strategy to take texture-induced anisotropy into account during FE simulations of metal forming processes

  • Research Summary
  • Multi-scale Modeling of Metal Forming
  • Published:
JOM Aims and scope Submit manuscript

Abstract

During metal forming, the mechanical properties in all locations of the part evolve, usually in a heterogeneous way. In principle, this should be taken into account when performing finite element (FE) simulations of the forming process, by modeling the evolution of the mechanical properties in every integration point of the FE mesh and coupling the result back to the FEshell. This is the meaning of the term ‘full-field modeling.’ The issue is developed further with focus on the evolution of texture and plastic anisotropy. It is explained that in principle, such fullfield modeling would require a gigantic computational effort which (at least at present) would be out of reach of most research organizations. A methodology is then presented to overcome this difficulty by using efficient models for texture updating and for texture-based plastic anisotropy, and by optimizing the overall calculation scheme without sacrificing the accuracy of the texture prediction. Some of the first results (obtained for cup drawing of anisotropic deep drawing steel) are shown, including comparison to experimental results. Possible future applications of the method are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.F. Kocks, C.N. Tomé, and H.-R. Wenk, Texture and Anisotropy: Preferred Orientations and their Effect on Materials Properties (Cambridge University Press, 1998), ISBN 0 521 46516 8.

  2. O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Second Edition (London: CRC Press, 2009), ISBN-10: 1420063650

    Book  Google Scholar 

  3. J. Gil Sevillano, Plastic Deformation and Fracture of Materials, ed. H. Mughrabi, Vol. 6 of Materials Science and Technology: A Comprehen sive Treatment, ed. R.W. Cahn, P. Haasen, and E.J. Kramer (Weinheim, Germany, New York, USA: VCH, 1993), pp. 19–88. (ISBN 3-527-26819-7 or 0-89573-694-2).

    Google Scholar 

  4. B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte and E. Aernoudt, Acta Mater., 49 (2001), pp. 1607–1619.

    Article  CAS  Google Scholar 

  5. B. Peeters, B. Bacroix, C. Teodosiu, P. Van Houtte, and E. Aernoudt, Acta Mater., 49 (2001), pp. 1621–1632.

    Article  CAS  Google Scholar 

  6. E.F. Rauch, J.J. Gracio, F. Barlat, and G. Vincze, Modelling Simul. Mater. Sci. Eng., 19 (2011), 035009 (18pp).

    Article  Google Scholar 

  7. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater., 58 (2010), pp. 1152–1211.

    Article  CAS  Google Scholar 

  8. J. Winters, “Implementation of a Texture-based Yield Locus into an Elastoplastic Finite Element Code. Application to Sheet Forming” (Ph. D. Thesis, Leuven, Belgium: Katholieke Universiteit Leuven, Faculty of Engineering, 1996), ISBN 90 5682 035 4.

    Google Scholar 

  9. G. Dieter, Mechanical Metallurgy (Tokyo: McGraw-Hill, 1976), ISBN 0 07 016891-1.

    Google Scholar 

  10. P. Van Houtte, S.K. Yerra, and A. Van Bael, Int. J. Plasticity, 25 (2009), pp. 332–360.

    Article  Google Scholar 

  11. P.R. Dawson, S.R. MacEwen, and P.-D. Wu, International Materials Reviews, 48 (2003), pp. 86–122.

    Article  CAS  Google Scholar 

  12. P. Van Houtte, S. Li, and O. Engler, Continuum Scale Simulation of Engineering Materials, ed. D. Raabe, F. Roters, F. Barlat, and L.Q. Chen (Weinheim, Germany: Wiley-VCH, 2004), pp. 459–472. (ISBN 3-527-30760-5).

    Google Scholar 

  13. R.A. Lebensohn, A. Rollet, and P. Suquet, JOM, 63(3) (2011), pp. 13–18.

    Article  Google Scholar 

  14. L.S. Toth and P. Van Houtte, Textures and Microstructures, 19 (1992), pp. 229–244.

    Article  Google Scholar 

  15. P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay, Int. J. Plasticity, 21 (2005), pp. 589–624.

    Article  Google Scholar 

  16. P. Bate, Philos. T. Roy. Soc. A, 357:1756 (1999), p. 1589.

    Article  CAS  Google Scholar 

  17. O. Engler, M. Crumbach, and S. Li, Acta Mater., 53 (2005), pp. 2241–2257.

    Article  CAS  Google Scholar 

  18. P. Van Houtte, Int. J. Plasticity, 10 (1994), pp. 719–748.

    Article  Google Scholar 

  19. J. Gawad, A. Van Bael, S.K. Yerra, G. Samaey, P. Van Houtte, and D. Roose, AIP Conference Proceedings: Vol. 1252 (1) (NUMIFORM 2010, Pohang, Korea), ed. F. Barlat, Y. Moon, M. Lee, (New York: Springer, 2010), pp. 770–777.

    Google Scholar 

  20. A. Van Bael, J. Gawad, P. Eyckens, G. Samaey, D. Roose, and P. Van Houtte. Submitted to: Proc. International Conference on Technology of Plasticity (ICTP 2011), RWTH Aachen (2011).

  21. P. Van Houtte, J. Gawad, P. Eyckens, B. Van Bael, Giovanni Samaey, and D. Roose, submitted to Proc. International Conference on Textures of Materials 16 (ICOTOM 16), IIT Mumbai (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Van Houtte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Houtte, P., Gawad, J., Eyckens, P. et al. A full-field strategy to take texture-induced anisotropy into account during FE simulations of metal forming processes. JOM 63, 37–43 (2011). https://doi.org/10.1007/s11837-011-0189-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0189-9

Keywords

Navigation