Skip to main content
Log in

Nanocrystalline refractory metals for extreme condition applications

  • Research Summary
  • Refractory Metals and Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

For the last decade, there has been research aimed at engineering plastic instability into the deformation behavior of body centered cubic (b.c.c.) metals. At dynamic strain rates, the adiabatic shear band deformation mode has been shown to improve the performance of kinetic energy penetrator materials. However, for some b.c.c. metals the transition to localized plastic deformation dominates at all strain rates. This limits the traditional engineering properties (e.g., ductility and toughness) and feasibility of incorporation into a long rod penetrator system. Recently, we demonstrated that nanocrystalline tantalum shows significant promise as it deforms via adiabatic shear bands in dynamic compression but shows significant tensile elongation in quasi-static deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.S. Magness and T.G. Farrand, “Deformation Behavior and its Relation to the Penetration Performance of High-Density KE Penetrator Materials,” Proceedings of the Army Science Conference (Durham, NC: Defense Technical Information Center, 1990), pp. 465–479.

    Google Scholar 

  2. L.S. Magness, Mech. Mater., 17 (1994), pp. 147–154.

    Article  Google Scholar 

  3. Q. Wei, D. Jia, K.T. Ramesh, and E. Ma, Appl. Phys. Lett., 81 (2002), pp. 1240–1242.

    Article  CAS  Google Scholar 

  4. D. Jia, K.T. Ramesh, and E. Ma, Acta Mater., 51 (2003), pp. 3495–3509.

    Article  CAS  Google Scholar 

  5. Q. Wei et al., Mater. Sci. Eng. A, 358 (2003), pp. 266–272.

    Article  Google Scholar 

  6. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Mater. Sci. Eng. A, 381 (2004), pp. 71–79; doi:10.1016/j. msea.2004.03.064.

    Article  Google Scholar 

  7. Q. Wei, T. Jiao, K.T. Ramesh, and E. Ma, Scr. Mater., 50 (2004), pp. 359–364.

    Article  CAS  Google Scholar 

  8. Q. Wei et al., Acta Mater., 52 (2004), pp. 1859–1869.

    Article  CAS  Google Scholar 

  9. Q. Wei et al., Appl. Phys. Lett., 86 (2005); doi: 10.1063/1.1875754.

  10. Q. Wei et al., Acta Mater., 54 (2006), pp. 77–87, doi:10.1016/j.actamat.2005.08.031.

    CAS  Google Scholar 

  11. Q. Wei, K.T. Ramesh, B.E. Schuster, L.J. Kecskes, and R.J. Dowding, JOM, 58 (9) (2006), pp. 40–44.

    Article  Google Scholar 

  12. Q. Wei et al., Acta Mater., 54 (2006), pp. 4079–4089, doi:10.1016/j.actamat.2006.05.005.

    Article  CAS  Google Scholar 

  13. Q. Wei et al., Mater. Sci. Eng. A, 493 (2008), pp. 58–64; doi:10.1016/j.msea.2007.05.126.

    Article  Google Scholar 

  14. Q. Wei et al., Acta Mater., 59 (2011), pp. 2423–2436.

    Article  CAS  Google Scholar 

  15. T.W. Wright, The Physics and Mathematics of Adiabatic Shear Bands (Cambridge, U.K.: Cambridge Press, 2002).

    Google Scholar 

  16. V.P. Alekseevskii, Fizika Goreniya i Vzryva (Combustion, Explosion, and Shock Waves), 2 (1966), pp. 99–106.

    Google Scholar 

  17. A.A. Tate, J. Mech. Phys. Solids, 15 (1967), pp. 387–399.

    Article  Google Scholar 

  18. Y. Bai and B. Dodd, Adiabatic Shear Localization: Occurrence, Theories and Applications (London: Pergamon Press, 1992).

    Google Scholar 

  19. E.O. Hall, Proc. Phys. Soc. B, 64 (1951), pp. 747–752.

    Article  Google Scholar 

  20. N.J. Petch, J. Iron and Steel Institute, 174 (1953), pp. 25–28.

    CAS  Google Scholar 

  21. L.S. Magness et al., Proc. SPIE-Int. Soc. Opt. Eng., 4608 (2002), pp. 216–224; doi:10.1117/12.465225.

    CAS  Google Scholar 

  22. Y.Z. Guo, Y.L. Li, Z. Pan, F.H. Zhou, and Q. Wei, Mechanics of Materials 42 (2010), pp. 1020–1029; doi:10.1016/j.mechmat.2010.09.002.

    Article  Google Scholar 

  23. S. Cheng, W.W. Milligan, X.-L. Wang, H. Choo, and P.K. Liaw, Mater. Sci. Eng. A, 493 (2008), pp. 226–231.

    Article  Google Scholar 

  24. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 45 (2000), pp. 103–189.

    Article  CAS  Google Scholar 

  25. A.P. Zhilyaev and T.G. Langdon, Prog. Mater. Sci., 53 (2008), pp. 893–979.

    Article  CAS  Google Scholar 

  26. J.P. Ligda, B.E. Schuster, and Q. Wei, unpublished work (2011).

  27. D. Jia and K.T. Ramesh, Exp. Mech., 44 (2004), pp. 445–454; doi:10.1177/0014485104047608.

    Article  Google Scholar 

  28. M.D. Uchic and D.M. Dimiduk, Mater. Sci. Eng. A, 400–401 (2005), pp. 268–278.

    Google Scholar 

  29. M.D. Uchic, P.A. Shade, and D.M. Dimiduk, Annual Review of Materials Research, 39 (2009), pp. 361–386; doi:10.1146/annurev-matsci-082908-145422.

    Article  CAS  Google Scholar 

  30. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater., 53 (2005), pp. 1821–1830.

    Article  CAS  Google Scholar 

  31. M.B. Lowry et al., Acta Mater. 58 (2010), pp. 5160–5167.

    Article  CAS  Google Scholar 

  32. D. Kaufmann, R. Monig, C.A. Volkert, and O. Kraft, Int. J. Plasticity, 27 (2011), pp. 470–478.

    Article  CAS  Google Scholar 

  33. B.E. Schuster, W.N. Sharpe, J.P. Ligda, and Q. Wei, unpublished results.

  34. M.D. Uchic, D.M. Dimiduk, R. Wheeler, P.A. Shade, and H.L. Fraser, Scr. Mater., 54 (2006), pp. 759–764; doi:10.1016/j.scriptamat.2005.11.016.

    Article  CAS  Google Scholar 

  35. P.A. Shade et al., Acta Mater., 57 (2009), pp. 4580–4587; doi:10.1016/j.actamat.2009.06.029.

    Article  CAS  Google Scholar 

  36. C. Eberl, D.S. Gianola, and S. Bundschuh, Mathworks (Natick, MA: The Mathworks, Inc., 2006), File I.D. 12413.).

    Google Scholar 

  37. K.T. Hartwig, S.N. Mathaudhu, H.J. Maier, and I. Karaman, in Ultrafi ne Grained Materials II, ed. Y. T. Zhu et al. (Warrendale, PA: TMS, 2002), pp. 151–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Schuster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, B.E., Ligda, J.P., Pan, Z.L. et al. Nanocrystalline refractory metals for extreme condition applications. JOM 63, 27–31 (2011). https://doi.org/10.1007/s11837-011-0202-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0202-3

Keywords

Navigation