Skip to main content
Log in

Oxidation potentials in lead and zinc smelting

  • Refining Technology
  • Feature
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Oxygen sensors based on the solid electrolyte ZrO2 found early and enthusiastic acceptance in the iron, steel, and copper smelting industries. Their adoption for lead and zinc smelting processes has been slower. This paper reviews the general principles of this technology, discusses its application, and suggests what might be expected in its expanded use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Littlewood, Can. Met. Quart., 5(1) (1966), p. 1035.

    Google Scholar 

  2. W.A. Fischer and W. Ackermann, Arch. f. d. Eisenhuttenwesen, Part I, 36(9) (1965), p. 643; Part II, 36 (10) (1965), p. 695.

    CAS  Google Scholar 

  3. G.R. Fitterer, Journal of Metals, 18(8) (1966), p. 961.

    CAS  Google Scholar 

  4. C.B. Alcock, editor, Electromotive Force Measurements in High-temperature Systems (London: Nuffield Research Group Symposium, IMM, 1968).

    Google Scholar 

  5. J.M. Floyd, D.S. Conochie, and N.C. Grave, Proc. Aust. Inst. Min. Metall., 270 (1979), p. 15.

    CAS  Google Scholar 

  6. J.M. Floyd, N.C. Grave, and B.W. Lightfoot, Australia Japan Extractive Metallurgy Symposium (Sydney, Australia: Aus IMM, 1989), p. 63.

    Google Scholar 

  7. P. Taskinenm, K. Seppala, J. Laulumaa, and J. Poijarvi, Mineral Processing & Extractive Metallurgy, 110(2) (2001), p. C94.

    Google Scholar 

  8. H. Kurokawa, Y. Kondo, K. Baba, T. Inami, and N. Kemori, Injection in Process Metallurgy, ed. T. Lehner, P.J. Koros, and V. Ramachandran (Warrendale, PA: TMS, 1991), p. 253.

    Google Scholar 

  9. G.A. Riveros and A.A. Luraschi, Converting, Fire Refining and Casting, ed. J.D. McCain and J.M. Floyd (Warrendale, PA: TMS, 1994), p. 237.

    Google Scholar 

  10. S.W. Marcuson, S. Tessier, A. Vahed, A. Fritz, and C. Diaz, Pyrometallurgy of Copper, Copper 95-Cobre 95, ed. W.J. Chen et al. (Montreal, Canada: Canadian Institute of Mining, Metallurgy, and Petroleum (CIM), 1995), p. 271.

    Google Scholar 

  11. H.O. Hofman, Metallurgy of Lead (New York: Mc-Graw-Hill Book Company, 1918), p. 342.

    Google Scholar 

  12. D.R. Morris, B.R. Amero, P.G. Evans, W. Petruk, and D.R. Owens, Met. Trans. B, 14B (1983), p. 617.

    Article  CAS  Google Scholar 

  13. J.T. Chao, P.J. Dugdale, D.R. Morris, and F.R. Steward, Met. Trans. B, 9B (1978), p. 293.

    Article  CAS  Google Scholar 

  14. M.J. Hollitt, Symposium on Extractive Metallurgy (Melbourne, Australia: Aus. IMM, 1984), p. 69.

    Google Scholar 

  15. L. Fontainas, D. Verhulst, and P. Bruwier, Can. Met. Quart., 24(1) (1985), p. 47.

    CAS  Google Scholar 

  16. N. Moelans, B. Coletti, M. Straetemans, B. Blanpain, and P. Wollants, Metallurgical and Materials Processing, Principles, and New Technologies (Yazawa Symposium), ed. F. Kongoli, K. Itagaki, C. Yamagauchi, and H.Y. Sohn (Warrendale, PA: TMS, 2003), p. 509.

    Google Scholar 

  17. G.G. Richards, EPD Congress 1993, ed. G. Warren (Warrendale, PA: TMS, 1993), p. 525.

    Google Scholar 

  18. Y. Lee, N. Moon, and C. Choi, Quality in Non-Ferrous Pyrometallurgy, ed. M.A. Kozlowski, R.W. McBean, and S.A. Argyropoulos (Montreal, Canada, CIM, 1995), p. 357.

    Google Scholar 

  19. C.Y. Choi and Y.H. Lee, REWAS 99-Global Symposium on Recycling, Waste Treatment, and Clean Technology, ed. I. Gaballah, J. Hager, and R. Solozabal (Warrendale, PA: TMS, 1999), p. 147.

    Google Scholar 

  20. Y. Lee, N. Moon, and C. Choi, J. Mining and Materials Processing Institute of Japan, 116(2) (2000), p. 147.

    Article  CAS  Google Scholar 

  21. Y.I. Sannikov, M.A. Liamina, V.A. Shumski, and Y.A. Grinin, CIM Bulletin, 91(1022) (1998), p. 76.

    CAS  Google Scholar 

  22. Z. Kozuka, MMIJ/AusIMM Joint Symposium (Sendai, Japan: MMIJ, 1983), p. 195.

    Google Scholar 

  23. H.H. Kellogg, Lead-Zinc 90, ed. T.S. Mackey and R.D. Prengaman (Warrendale, PA: TMS, 1990), p. 549.

    Google Scholar 

  24. K.A. Foo, R.L. Leonard, J.G. Whellock, and R.S. Celmer, “Direct Sulphidization Fuming of Zinc,” U.S. patent 5,372,630 (13 December 1994).

  25. J.G. Whellock, private communication, JW Technologies, LLC, Castle Rock, Colorado (2011), www. jwtechnologies.com.

    Google Scholar 

  26. J. McHugh, Alexander Holley and the Makers of Steel (Baltimore, MD: Johns Hopkins University Press, 1980), p. 91.

    Google Scholar 

  27. J.W. Matousek, JOM, 62(3) (2010), p. 64.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matousek, J.W. Oxidation potentials in lead and zinc smelting. JOM 63, 63–67 (2011). https://doi.org/10.1007/s11837-011-0209-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0209-9

Keywords

Navigation