Skip to main content
Log in

Materials Phenomena Revealed by In Situ Tribometry

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In situ tribometry, the study of real-time friction and wear processes occurring at “buried” sliding interfaces, was used to examine fundamental changes to structure and chemistry of solid lubricant and hard coatings. In situ techniques of optical microscopy and Raman spectroscopy were used to observe interfacial sliding dynamics and identify near-surface structural/chemical changes, respectively. Third-body physical and chemical processes, such as thickening, thinning, loss of transfer films, generation of wear debris, and sliding-induced chemical changes, were identified for sapphire sliding against Ti-Si-C, nanocrystalline diamond (NCD), and titanium- and tungsten-doped diamond-like carbon (DLC) coatings. These processes observed by in situ methods were also used to explain why friction and wear behavior changed with coating composition, properties or test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Oxford: Clarendon, 1986).

    Google Scholar 

  2. T.W. Scharf, J.A. Ohlhausen, D.R. Tallant, and S.V. Prasad, J. Appl. Phys. 101, 063521 (2007).

    Article  Google Scholar 

  3. T.W. Scharf, P.G. Kotula, and S.V. Prasad, Acta Mater. 58, 4100 (2010).

    Article  Google Scholar 

  4. P. Stoyanov, H.W. Strauss, and R.R. Chromik, Wear 274–275, 149 (2011).

    Google Scholar 

  5. I.L. Singer, R.N. Bolster, J. Wegand, S. Fayeulle, and B.C. Stupp, Appl. Phys. Lett. 57, 995 (1990).

    Article  Google Scholar 

  6. T.W. Scharf, Handbook of Lubrication and Tribology, ed. R. Bruce (Boca Raton, CRC Press, 2012), in press

  7. A. Erdemir, O.L. Eryilmaz, and G. Fenske, J. Vac. Sci. Technol. A 18, 1987 (2000).

    Article  Google Scholar 

  8. M. Godet, Wear 100, 437 (1984).

    Article  Google Scholar 

  9. K.J. Wahl and W.G. Sawyer, MRS Bull. 33, 1159 (2008).

    Article  Google Scholar 

  10. M. Belin and J.M. Martin, Wear 156, 151 (1992).

    Article  Google Scholar 

  11. K.J. Wahl, M. Belin, and I.L. Singer, Wear 214, 212 (1998).

    Article  Google Scholar 

  12. P.M. Cann and H.A. Spikes, Tribol. Trans. 34, 248 (1991).

    Article  Google Scholar 

  13. U.C. Cheng and P.C. Stair, Tribol. Lett. (USA) 4, 163 (1998).

    Article  Google Scholar 

  14. Y.T. Pei, D. Galvan, and J.T.M. De Hosson, Acta Mater. 53, 4505 (2005).

    Article  Google Scholar 

  15. T.W. Scharf, M.C. Romanes, K.C. Mahdak, J.Y. Hwang, R. Banerjee, R.D. Evans, and G.L. Doll, Appl. Phys. Lett. 93, 151909 (2008).

    Article  Google Scholar 

  16. M. Rebelo de Figueiredo, C. Muratore, R. Franz, R.R. Chromik, K.J. Wahl, A.A. Voevodin, M. O’Sullivan, M. Lechthaler, and C. Mitterer, Tribol. Lett. (USA) 40, 365 (2010).

    Article  Google Scholar 

  17. R. Gohar and A. Cameron, ASLE Trans. 10, 215 (1967).

    Article  Google Scholar 

  18. C.A. Foord, W.C. Hammann, and A. Cameron, ASLE Trans. 11, 31 (1968).

    Article  Google Scholar 

  19. S.D. Dvorak, K.J. Wahl, and I.L. Singer, Tribol. Lett. (USA) 28, 263 (2007).

    Article  Google Scholar 

  20. S.D. Dvorak, K.J. Wahl, and I.L. Singer, Tribol. Trans. 45, 354 (2002).

    Article  Google Scholar 

  21. K.J. Wahl, R.R. Chromik, and G.Y. Lee, Wear 264, 731 (2008).

    Article  Google Scholar 

  22. R.R. Chromik, C.C. Baker, A.A. Voevodin, and K.J. Wahl, Wear 262, 1239 (2007).

    Article  Google Scholar 

  23. T.W. Scharf and I.L. Singer, Tribol. Lett. (USA) 36, 43 (2009).

    Article  Google Scholar 

  24. H.W. Strauss, R.R. Chromik, S. Hassani, and J.E. Klemberg-Sapieha, Wear 272, 133 (2011).

    Article  Google Scholar 

  25. T.W. Scharf and I.L. Singer, Tribol. Trans. 45, 363 (2002).

    Article  Google Scholar 

  26. T.W. Scharf and I.L. Singer, Tribol. Lett. (USA) 14, 137 (2003).

    Article  Google Scholar 

  27. T.W. Scharf and I.L. Singer, Tribol. Lett. (USA) 14, 3 (2003).

    Article  Google Scholar 

  28. K.R. Sriraman, H.W. Strauss, S. Brahimi, R.R. Chromik, J.A. Szpunar, J.H. Osborne, and S. Yue, Tribol. Int. (2011), submitted

  29. R.R. Chromik, A.L. Winfrey, J. Luning, R.J. Nemanich, and K.J. Wahl, Wear 265, 477 (2008).

    Article  Google Scholar 

  30. I.L. Singer, S.D. Dvorak, K.J. Wahl, and T.W. Scharf, J. Vac. Sci. Technol. A 21, S232 (2003).

    Article  Google Scholar 

  31. B. Feng, D.M. Cao, W.J. Meng, L.E. Rehn, P.M. Baldo, and G.L. Doll, Thin Solid Films 398–399, 210 (2001).

    Article  Google Scholar 

  32. D. Martínez-Martínez, C. López-Cartes, A. Fernández, and J.C. Sánchez-López, Thin Solid Films 517, 1662 (2009).

    Article  Google Scholar 

  33. J.C. Sánchez-López, D. Martínez-Martínez, C. López-Cartes, and A. Fernández, Surf. Coat. Technol. 202, 4011 (2008).

    Article  Google Scholar 

  34. H.W. Strauss, M. Stephan, and R.R. Chromik, in preparation

  35. A.C. Ferrari, Tribology of Diamond-like Carbon Films: Fundamentals and Applications, ed. C. Donnet and A. Erdemir (New York: Springer, 2008), pp. 25–81.

    Chapter  Google Scholar 

  36. A. Leyland and A. Matthews, Wear 246, 1 (2000).

    Article  Google Scholar 

  37. I.P. Hayward and I.L. Singer, New Diamond Science and Technology (1991), pp. 785–789.

  38. S.E. Grillo and J.E. Field, J. Phys. D Appl. Phys. 30, 202 (1997).

    Article  Google Scholar 

  39. A.R. Konicek, C. Jaye, M.A. Hamilton, W.G. Sawyer, D.A. Fischer, and R.W. Carpick, Tribol. Lett. (USA) 44, 99 (2011).

    Article  Google Scholar 

  40. R.D. Evans, E.P. Cooke, C.R. Ribaudo, and G.L. Doll, Surface Engineering 2002: Synthesis, Characterization and Applications, ed. A. Kumar, W.J. Meng, Y. Cheng, J.S. Zabinski, G.L. Doll, and S. Veprek (Warrendale: Materials Research Society, 2002), pp. 407–417.

    Google Scholar 

  41. A.C. Ferrari and J. Robertson, Phys. Rev. B 64, 754141 (2001).

    Article  Google Scholar 

  42. J. Robertson, Adv. Phys. 35, 317 (1986).

    Article  Google Scholar 

  43. J.L. Lauer, Appl. Spectrosc. 50, 1378 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge helpful discussions with Drs. Irwin Singer and Kathryn Wahl from the Naval Research Laboratory. H.W.S. acknowledges assistance from Aleks Labuda, Arunava Deb, and Michel Stephan in constructing the in situ tribometer at McGill University and writing of control and analysis software. We also thank Gary Doll and Ryan Evans at The Timken Company for depositing the Ti- and W-doped DLC coatings, Salim Hassani and Jolanta Klemberg-Sapieha at École Polytechnique de Montréal for depositing the Ti–Si–C–H coatings, and A. Leigh Winfrey and Robert Nemanich for depositing the nanocrystalline diamond coatings. T.W.S. acknowledges the Donors of the American Chemical Society Petroleum Research Fund for partial support under Award # 46915-G5 and the National Science Foundation (Grant No. CMMI-0700828). R.R.C. acknowledges support from the Canadian Foundation for Innovation (CFI), Leader’s Opportunity Fund, Project #13029, and the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. R. Chromik or T. W. Scharf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chromik, R.R., Strauss, H.W. & Scharf, T.W. Materials Phenomena Revealed by In Situ Tribometry. JOM 64, 35–43 (2012). https://doi.org/10.1007/s11837-011-0229-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0229-5

Keywords

Navigation