Skip to main content
Log in

Effects of Crystallographic Orientation on Corrosion Behavior of Magnesium Single Crystals

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The corrosion behavior of magnesium single crystals with various crystallographic orientations was examined in this study. To identify the effects of surface orientation on the corrosion behavior in a systematic manner, single-crystal specimens with ten different rotation angles of the plane normal from the [0001] direction to the \( [ 10\overline{1} 0] \) direction at intervals of 10° were prepared and subjected to potentiodynamic polarization and potentiostatic tests as well as electrochemical impedance spectroscopy (EIS) measurements in 3.5 wt.% NaCl solution. Potentiodynamic polarization results showed that the pitting potential (E pit) first decreased from −1.57 V SCE to −1.64 V SCE with an increase in the rotation angle from 0° to 40°, and then increased to −1.60 V SCE with a further increase in the rotation angle to 90°. The results obtained from potentiostatic tests are also in agreement with the trend in potentiodynamic polarization tests as a function of rotation angle. A similar trend was also observed for the depressed semicircle and the total resistances in the EIS measurements due to the facile formation of MgO and Mg(OH)2 passive films on the magnesium surface. In addition, the amount of chloride in the passive film was found first to increase with an increase in rotation angle from 0° to 40°, then decrease with a further increase in rotation angle, indicating that the tendency to form a more protective passive film increased for rotation angle near 0° [the (0001) plane] or 90° [the \( ( 10\overline{1} 0) \) plane].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.K. Lim, D.H. Kim, J.Y. Lee, J.S. Kyeong, W.T. Kim, and D.H. Kim, Met. Mater. Int. 15, 337 (2009).

    Article  Google Scholar 

  2. G. Ben-Hamu, D. Eliezer, K.S. Shin, and L. Wagner, Corros. Sci. Tech. 7, 152 (2008).

    Google Scholar 

  3. D.H. Song, C.W. Lee, K.Y. Nam, S.W. Lee, Y.H. Park, I.M. Park, and K.M. Cho, J. Kor. Inst. Met. Mater. 44, 338 (2006).

    Google Scholar 

  4. C.D. Yim, N.E. Kang, and B.S. You, Met. Mater. Int. 16, 377 (2010).

    Article  Google Scholar 

  5. G. Cole, Mater. Sci. Forum 419–422, 43 (2003).

    Article  Google Scholar 

  6. S. Schumann and H. Friedrich, Mater. Sci. Forum 419–422, 51 (2003).

    Article  Google Scholar 

  7. N.D. Nam, W.C. Kim, J.C. Kim, K.S. Shin, and H.C. Jung, Corros. Sci. 51, 2942 (2009).

    Article  Google Scholar 

  8. C.D. Lee, Met. Mater. Int. 16, 543 (2010).

    Article  Google Scholar 

  9. N.D. Nam, W.C. Kim, J.G. Kim, K.S. Shin, and H.C. Jung, J. Alloys Compd. 509, 4839 (2011).

    Article  Google Scholar 

  10. D.H. Kim, H.K. Lim, Y.K. Kim, J.S. Kyeong, W.T. Kim, and D.H. Kim, Met. Mater. Int. 17, 383 (2011).

    Article  Google Scholar 

  11. K.H. Kim, N.D. Nam, J.G. Kim, K.S. Shin, and H.C. Jung, Intermetallics 19, 1831 (2011).

    Article  Google Scholar 

  12. W.C. Kim, N.D. Nam, J.G. Kim, and J.I. Lee, Electrochem. Solid State Lett. 14, C21 (2011).

    Article  Google Scholar 

  13. S.S. Park, G.T. Bae, D.H. Kang, I.H. Jung, K.S. Shin, and N.J. Kim, Scr. Mater. 57, 793 (2007).

    Article  Google Scholar 

  14. C.D. Lee and K.S. Shin, Acta Mater. 55, 4293 (2007).

    Article  Google Scholar 

  15. G. Song and A. Atrens, Adv. Eng. Mater. 5, 837 (2003).

    Article  Google Scholar 

  16. G.L. Makar and J. Kruger, J. Electrochem. Soc. 137, 414 (1990).

    Article  Google Scholar 

  17. G. Song, A. Atrens, D. St-John, X. Wu, and J. Nairn, Corros. Sci. 39, 1981 (1997).

    Article  Google Scholar 

  18. T.R. Beck and S.G. Chan, J. Electrochem. Soc. 130, 1289 (1983).

    Article  Google Scholar 

  19. P. Schmutz, V. Guillaumin, S. Lillard, J. Lillard, and G.S. Frankel, J. Electrochem. Soc. 150, B99 (2003).

    Article  Google Scholar 

  20. G. Baril and N. Pebere, Corros. Sci. 43, 471 (2001).

    Article  Google Scholar 

  21. V. Lisitsyn, G. Ben-Hamu, D. Eliezer, and K.S. Shin, Corros. Sci. 51, 776 (2009).

    Article  Google Scholar 

  22. N.D. Nam, J.G. Kim, and W.S. Hwang, Scr. Mater. 63, 625 (2010).

    Article  Google Scholar 

  23. G. Ben-Hamu, D. Eliezer, W. Dietzel, and K.S. Shin, Corros. Sci. 50, 1505 (2008).

    Article  Google Scholar 

  24. G. Ben-Hamu, D. Elizer, A. Kaya, Y.G. Na, and K.S. Shin, Mater. Sci. Eng. A 435–436, 579 (2006).

    Google Scholar 

  25. B.H. Lee, S.M. Kim, M.E. Mehtedi, E. Evangelista, and C.S. Lee, Met. Mater. Int. 16, 197 (2010).

    Article  Google Scholar 

  26. S.H. Kwon, K.S. Song, K.S. Shin, and S.I. Kwun, Met. Mater. Int. 17, 207 (2011).

    Article  Google Scholar 

  27. K.S. Song, H.C. Jung, and K.S. Shin, Met. Mater. Int. 17, 397 (2011).

    Article  Google Scholar 

  28. T.T. Sasaki, J.D. Ju, K. Hono, and K.S. Shin, Scr. Mater. 61, 80 (2009).

    Article  Google Scholar 

  29. R.F. Ashton and M.T. Hepworth, Corrosion 24, 50 (1968).

    Google Scholar 

  30. D. Abayarathna, E.B. Hale, T.J. OKeefe, Y.M. Wang, and D. Radovic, Corros. Sci. 32, 755 (1991).

    Article  Google Scholar 

  31. I.W. Roger Buck and L. Henry, J. Electrochem. Soc. 104, 474 (1957).

    Article  Google Scholar 

  32. J.L. Weininger and M.W. Breiter, J. Electrochem. Soc. 110, 484 (1963).

    Article  Google Scholar 

  33. B. Davepon, J.W. Schultze, U. Konig, and C. Rosenkranz, Surf. Coat. Technol. 169–170, 85 (2003).

    Article  Google Scholar 

  34. J. Mieluch and M. Smialowski, Corros. Sci. 4, 237 (1964).

    Article  Google Scholar 

  35. J.P. Pemsler, J. Electrochem. Soc. 111, 381 (1964).

    Article  Google Scholar 

  36. M. Liu, D. Qiu, M.C. Zhao, G. Song, and A. Atrens, Scr. Mater. 58, 421 (2008).

    Article  Google Scholar 

  37. J.M. Blakely and M. Eizenberg, The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, ed. D.A. King and D.F. Woodruff (Amsterdam: Elsevier, 1981), pp. 36–42.

    Google Scholar 

  38. H. Luth, Solid Surfaces, Interfaces and Thin Films (Berlin: Springer Verlag, 2001).

    Google Scholar 

  39. A. Gross, Theoretical Surface Science: A Microscopic Perspective (Berlin: Springer, 2003).

    Google Scholar 

  40. R.S. Lillard, J. Electrochem. Soc. 148, B1 (2001).

    Article  Google Scholar 

  41. R. Gou, F. Weinberg, and D. Tromans, Corrossion 51, 356 (1995).

    Article  Google Scholar 

  42. C.R. McCall, M.A. Hill, and R.S. Lillard, Corros. Eng. Sci. Technol. 40, 337 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the World Premier Materials (WPM) Program, funded by the Korea Ministry of Knowledge Economy through the Research Institute of Advanced Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Seon Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, K.S., Bian, M.Z. & Nam, N.D. Effects of Crystallographic Orientation on Corrosion Behavior of Magnesium Single Crystals. JOM 64, 664–670 (2012). https://doi.org/10.1007/s11837-012-0334-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0334-0

Keywords

Navigation