Skip to main content
Log in

Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Advanced soft magnetic materials are needed to match high-power density and switching frequencies made possible by advances in wide band-gap semiconductors. Magnetics capable of operating at higher operating frequencies have the potential to greatly reduce the size of megawatt level power electronics. In this article, we examine the role of soft magnetic materials in high-frequency power applications and we discuss current material’s limitations and highlight emerging trends in soft magnetic material design for high-frequency and power applications using the materials paradigm of synthesis → structure → property → performance relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. T.G. Wilson, IEEE Trans. Power Eletron. 15, 439 (2000).

    Article  Google Scholar 

  2. I.S. Jacobs, J. Appl. Phys. 50, 7294 (1979).

    Article  Google Scholar 

  3. L. Johnson, IEEE Trans. Power Apparatus Syst. 1, 68 (1982).

    Google Scholar 

  4. C.A. Dortolina and R. Nadira, IEEE Trans. Power Syst. 20, 1119 (2005).

    Article  Google Scholar 

  5. Department of Energy, Electricity Overview, 1949–2010. http://www.eia.gov/totalenergy.

  6. Department of Energy, What the Smart Grid Means to America’s Future. http://www.smartgrid.gov.

  7. W. Kramer, S. Chakraborty, B. Kroposki, and H. Thomas, Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies. Technical Report March (Golden, CO: National Renewable Energy Laboratory, 2008).

  8. G.F. Reed, B.M. Grainger, H. Bassi, E. Taylor, Z.-H. Mao, and A.K. Jones (Paper presented at the Panel Session on FACTS Applications To Improve Power System Dynamic Performance, IEEE PES T&D Conference and Exposition, April 2010), pp. 1–10.

  9. S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L.G. Franquelo, B. Wu, J. Rodriguez, M.A. Pérez, and J.I. Leon, IEEE Trans. Indust. Electron. 57, 2553 (2010).

    Article  Google Scholar 

  10. A.R. Hefner Jr. (Paper presented at Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, August 2008 IEEE, 2008), pp. 1–2.

  11. H. Fan and H. Li, Proc. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (Piscatay, NJ: IEEE, February 2010), pp. 210–215.

  12. Q. Li, M. Lim, J. Sun, A. Ball, Y. Ying, F.C Lee, and K.D.T. Ngo, Proc. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (Piscataway, NJ: IEEE, May 2009), pp. 533–539.

  13. W. van der Merwe and T. Mouton, Proc. 2009 IEEE International Conference on Industrial Technology (Piscataway, NJ: IEEE, 2009), pp. 1–6.

  14. W.G. Odendaal and J.A. Ferreira, IEEE Trans. Indust. Appl. 35, 932 (1999).

    Article  Google Scholar 

  15. C. Xiao (Ph.D. dissertation, Virginia Polytechnic Institute and State, Blacksburg, VA, 2006).

  16. J.W. Kolar, U. Drofenik, J. Biela, M.L. Heldwein, H. Ertl, T. Friedli, and S.D. Round, Proc. Power Conversion Conference—Nagoya (Piscataway, NJ: IEEE, April 2007), pp. 9–29.

  17. W. Shen, F. Wang, D. Boroyevich, and W. Tipton, IEEE Trans. Indust. Appl. 44, 213 (2008).

    Article  Google Scholar 

  18. D.J. Perreault, J. Hu, J.M. Rivas, Y. Han, O. Leitermann, R.C.N. Pilawa-Podgurski, A. Sagneri, and C.R. Sullivan, Proc. 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition (Piscataway, NJ: IEEE, 2009), pp. 1–14.

  19. C.R. Sullivan, Proc. 2009 IEEE Custom Integrated Circuits Conference (Piscataway, NJ: IEEE, 2009), pp. 291–298.

  20. G. Walker and G. Ledwich. IEEE Trans. Power Electron. 14, 74 (1999).

    Article  Google Scholar 

  21. M. Malinowski, K. Gopakumar, J. Rodriguez, and M.A. Pérez, IEEE Trans. Indust. Electron. 57, 2197 (2010).

    Article  Google Scholar 

  22. J.L. Hudgins, G.S. Simin, E. Santi, and M.A. Khan, IEEE Trans. Power Electron. 18, 907 (2003).

    Article  Google Scholar 

  23. J.W. Kolar, J. Biela, S. Waffler, T. Friedli, and U. Badstuebner, Proc. 6th International Conference on Integrated Power Electronics Systems (CIPS) (Piscataway, NJ: IEEE, 2010), pp. 16–18.

  24. K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Appl. Phys. 74, 331 (1993).

    Google Scholar 

  25. W.T. McLyman, Transformer and Inductor Design Handbook, 2nd ed. (New York: Marcel Dekker, Inc., 1988).

    Google Scholar 

  26. C.R. Sullivan, IEEE Trans. Power Electron. 14, 283 (1999).

    Article  Google Scholar 

  27. G. Lefevre, H. Chazal, J.P. Ferrieux, and J. Roudet, Application of Dowell method for Nanocrystalline toroid high frequency transformers (Paper presented at 35th Annual IEEE Power Electronics Specialists Conference, number 1, June 2004), pp. 899–904.

  28. W. Shen, F. Wang, D. Boroyevich, and C.W. Tipton, IEEE Trans. Power Electron. 23, 475 (2008).

    Article  Google Scholar 

  29. M Pavlovsky, Y. Tsuruta, and A. Kawamura, Proc. IEEE Energy Conversion Congress and Exposition (Piscataway, NJ: IEEE, September 2009), pp. 1768–1774.

  30. W.-J. Gu and R. Liu (Paper presented at 4th Annual IEEE Power Electronics Specialists Conference, Seattle, WA, June 1993).

  31. M.S. Rylko, K.J. Hartnett, J.G. Hayes, and M.G. Egan, Proc. IEEE Applied Power Electronics Conference and Exposition (Piscataway, NJ: IEEE, February 2009), pp. 2043–2049.

  32. Y. Wang, S.W.H. De Haan, and J.A. Ferreira, Proc. EPE, i (2009).

  33. T.E. Salem, D.P. Urciuloli, V. Lubormirsky, and G.K. Ovrebo, Proc. Twenty Second Annual IEEE Applied Power Electronics Conference (Piscataway, NJ: IEEE, February 2007), pp. 1258–1263.

  34. J.D. Livingston and W.G. Morris, J. Appl. Phys. 57, 3555 (1985).

    Article  Google Scholar 

  35. F. Costa, F. Alves, J.B. Desmoulins, D. Herisson, and J.F. Rialland, Proc. IEEE 31st Annual Power Electronics Specialists Conference (June 2000), pp. 308–313.

  36. R. Hasegawa, J. Optoelectron. Adv. Mater. 6, 503 (2004).

    Google Scholar 

  37. R. Alben, J.J. Becker, and M.C. Chi, J. Appl. Phys. 49, 1653 (1978).

    Article  Google Scholar 

  38. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).

    Article  Google Scholar 

  39. M.E. McHenry, M.A. Willard, and D.E. Laughlin, Progr. Mater. Sci. 44, 291 (1999).

    Article  Google Scholar 

  40. G. Bertotti, IEEE Trans. Magn. 24 (1988).

  41. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    Article  Google Scholar 

  42. H. Fukunaga, T. Eguchi, K. Koga, Y. Ohta, and H. Kakehashi, IEEE Trans. Magn. 26, 2008 (1990).

    Article  Google Scholar 

  43. T. Yanai, K. Takagi, K. Takahashi, M. Nakano, Y. Yoshizawa, and H. Fukunaga, J. Magn. Magn. Mater. 320, 833 (2008).

    Article  Google Scholar 

  44. H. Fukunaga, T. Yanai, H. Tanaka, M. Nakano, K. Takahashi, Y. Yoshizawa, K. Ishiyama, and K.I. Arai, IEEE Trans. Magn. 38, 3138 (2002).

    Article  Google Scholar 

  45. Y. Yoshizawa, S. Fujii, D.H. Ping, M. Ohnuma, and K. Hono, Scr. Mater. 48, 863 (2003).

    Article  Google Scholar 

  46. J. Zhang, J.-S. Lai, R.-Y. Kim, and W. Yu, IEEE Trans. Power Electron. 22, 1145 (2007).

    Article  Google Scholar 

  47. J. Long, M. McHenry, D.P. Urciuoli, V. Keylin, J. Huth, and T.E. Salem, J. Appl. Phys. 103, 07E705 (2008).

    Article  Google Scholar 

  48. S. Inoue and H. Akagi, IEEE Trans. Power Electron. 22, 535 (2007).

    Article  Google Scholar 

  49. M.S. Rylko, J.G. Hayes, and M.G. Egan, Proc. 2010 IEEE Vehicle Power and Propulsion Conference (Piscataway, NJ: IEEE, 2010), pp. 1–7.

  50. S. Yoshida, T. Mizushima, T. Hatanai, and A. Inoue, IEEE Trans. Magn. 36, 3424 (2000).

    Article  Google Scholar 

  51. I. Endo, H. Tatsumi, I. Otsuka, H. Yamamoto, A. Shintani, H. Koshimoto, M. Yagi, and K. Murata, IEEE Trans. Magn. 36, 3421 (2000).

    Article  Google Scholar 

  52. A. Kolano-Burian, R. Kolano, J. Szynowski, and L.K. Varga, J. Magn. Magn. Mater. 320, e758 (2008).

    Article  Google Scholar 

  53. R.J. Martis and D.W. Rogers, Proc. Applied 791 Power Electronics Conference and Exposition, APEC ’94 (Piscataway, NJ: IEEE, February 1994), pp. 233–237.

  54. P.R. Ohodnicki, S.Y. Park, D.E. Laughlin, M.E. McHenry, V. Keylin, and M.A. Willard, J. Appl. Phys. 103, 07E729 (2008).

    Article  Google Scholar 

  55. M.E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, V.R.V. Ramanan, and D.E. Laughlin, Scr. Mater. 48, 881 (2003).

    Article  Google Scholar 

  56. C.F. Conde, A. Conde, P. Svec, and P. Ochin, Mater. Sci. Eng. A 375–377, 718 (2004).

    Google Scholar 

  57. C.F. Conde, J.M. Borrego, J.S. Blázquez, A. Conde, P. Švec, D. Janičkovič, J. Alloy. Compd. 509, 1994 (2011).

    Article  Google Scholar 

  58. S. Shen, P. Ohodnicki, S. Kernion, A. Leary, V. Keylin, J. Huth, and M.E. McHenry, TMS, 2012.

  59. M. Ohnuma, G. Herzer, P. Kozikowski, C. Polak, V. Budinsky, and S. Koppoju, Acta Mater. 60, 1278 (2012).

    Article  Google Scholar 

  60. C.-Y. Um, F. Johnson, M. Simone, J. Barrow, and M.E. McHenry, J. Appl. Phys. 97, 10F504 (2005).

    Article  Google Scholar 

  61. T.M. Heil, K.J. Wahl, A.C. Lewis, J.D. Mattison, and M.A. Willard, Appl. Phys. Lett. 90, 212508 (2007).

    Article  Google Scholar 

  62. P.R. Ohodnicki, J. Long, D.E. Laughlin, M.E. McHenry, V. Keylin, and J. Huth, J. Appl. Phys. 104, 113909 (2008).

    Article  Google Scholar 

  63. P.R. Ohodnicki, V. Keylin, H.K. McWilliams, D.E. Laughlin, and M.E. McHenry, J. Appl. Phys. 103, 07E740 (2008).

    Article  Google Scholar 

  64. M.S. Lucas, W.C. Bourne, A.O. Sheets, L. Brunke, M.D. Alexander, J.M. Shank, E. Michel, S.L. Semiatin, J. Horwath, and Z. Turgut, Mater. Sci. Eng. B 176, 1079 (2011).

    Article  Google Scholar 

  65. A. Hsiao, M.E. McHenry, D.E. Laughlin, M.J. Kramer, C. Ashe, and T. Ohkubo, IEEE Trans. Magn. 38, 3039 (2002).

    Article  Google Scholar 

  66. F. Ye and K. Lu, Phys. Rev. B 60, 7018 (1999).

    Article  Google Scholar 

  67. B. Varga, A. Lovas, F. Ye, X.J. Gu, and K. Lu, Mater. Sci. Eng. A 286, 193 (2000).

    Article  Google Scholar 

  68. Y.X. Zhuang, J.Z. Jiang, T.J. Zhou, H. Rasmussen, and L. Gerward, Appl. Phys. Lett. 77, 4133 (2000).

    Article  Google Scholar 

  69. F. Ye and K. Lu, Acta Metall. 46, 5965 (1998).

    Google Scholar 

  70. X.J. Gu, H.J. Jin, H.W. Zhang, J.Q. Wang, and K. Lu, Acta Mater. 45, 1091 (2001).

    Google Scholar 

  71. J.-O. Andersson and J. AŁgren, J. Appl. Phys. 72, 1350 (1992).

    Article  Google Scholar 

  72. F. Faupel, W. Frank, M.-P. Macht, V. Naundorf, K. Ratzke, H. Schober, S. Sharma, and H. Teichler, Rev. Modern Phys. 75, 237 (2003).

    Article  Google Scholar 

  73. M.A. Willard, T.M. Heil, and R. Goswami, Metall. Mater. Trans. A 38A, 725 (2007)

    Article  Google Scholar 

  74. P.R. Ohodnicki Jr., D.E. Laughlin, M.E. McHenry, and M. Widom, Acta Mater. 58, 4804 (2010).

    Article  Google Scholar 

  75. S.J. Kernion, P.R. Ohodnicki, and M.E. McHenry, J. Appl. Phys. 111, 07A316 (2012).

    Article  Google Scholar 

  76. S.J. Kernion, K.J. Miller, S. Shen, V. Keylin, J. Huth, and M.E. McHenry, IEEE. Trans. Magn. 47, 3452 (2011).

    Article  Google Scholar 

  77. P.R. Ohodnicki, Y.L. Qin, M.E. McHenry, D.E. Laughlin, and V. Keylin, J. Magn. Magn. Mater. 322, 315 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

The work of A.M. Leary and M.E. McHenry was supported by ARPA-E Award Number DE-AR0000219 and the ARL through Grant No. W911NF-08-2-0024.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex M. Leary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leary, A.M., Ohodnicki, P.R. & McHenry, M.E. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications. JOM 64, 772–781 (2012). https://doi.org/10.1007/s11837-012-0350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0350-0

Navigation