Skip to main content
Log in

Structure and Property of Interfaces in ARB Cu/Nb Laminated Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bulk Cu/Nb multilayered composites with high interfacial content have been synthesized via the accumulative roll bonding (ARB) method. Experimental characterization shows that these multilayers with submicronmeter and nanometer individual layer thicknesses contain a predominant, steady-state interface with the Kurdjumov–Sachs orientation relationship joining the mutual {112} planes of Cu and Nb. In this article, we overview microscopy and simulation results on the structure of this interface at an atomic level and its influence on interface properties, such as interface shear resistance and its ability to absorb point defects and nucleate dislocations nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (New York: Oxford University Press, 1997).

    Google Scholar 

  2. J.P. Hirth, Metall. Trans. 3, 3047 (1972).

    Article  Google Scholar 

  3. M.J. Demkowicz, J. Wang, R.G. Hoagland, Dislocations in Solids, vol. 14, Chapter 83 (Amsterdam: Elsevier North-Holland, 2008), p. 143.

  4. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  Google Scholar 

  5. C.N. Tomé, I.J. Beyerlein, J. Wang, and R.J. McCabe, JOM 63, 19 (2011).

    Article  Google Scholar 

  6. J. Wang, I.J. Beyerlein, and C.N. Tomé, Scripta Mater. 63, 741 (2010).

    Article  Google Scholar 

  7. J. Wang and I.J. Beyerlein, Modell. Simul. Mater. Sci. Eng. 20, 024002 (2012).

    Article  Google Scholar 

  8. J. Wang, I.J. Beyerlein, and J.P. Hirth, Modell. Simul. Mater. Sci. Eng. 20, 024001 (2012).

    Article  Google Scholar 

  9. J. Wang, A. Misra, R.G. Hoagland, and J.P. Hirth, Acta Mater. 60, 1503 (2012).

    Article  Google Scholar 

  10. J. Wang, R.G. Hoagland, X.Y. Liu, and A. Misra, Acta Mater. 59, 3164 (2011).

    Article  Google Scholar 

  11. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).

    Article  Google Scholar 

  12. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 3109 (2008).

    Article  Google Scholar 

  13. N. Li, N. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra, Scripta Mater. 67, 479 (2012).

    Article  Google Scholar 

  14. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung, Philos. Mag. 82, 643 (2002).

    Google Scholar 

  15. L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).

    Article  Google Scholar 

  16. K.A. Afanasyev and F. Sansoz, Nano Lett. 7, 2056 (2007).

    Article  Google Scholar 

  17. J. Wang and H. Huang, Appl. Phys. Lett. 88, 203112 (2006).

    Article  Google Scholar 

  18. N. Li, J. Wang, X. Zhang, and A. Misra, JOM 63, 63 (2011).

    Article  Google Scholar 

  19. N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, and J.P. Hirth, Acta Mater. 59, 5989 (2011).

    Article  Google Scholar 

  20. J. Wang, I.J. Beyerlein, A. Misra, S.M. Valone, and T.C. Germann, Advances in Heterogeneous Material Mechanics, ed. J. Fan, J. Zhang, H. Chen, and Z.H. Jin (Lancaster, PA: DEStech Publications, Inc., 2011), p. 39–46.

  21. B.M. Clemens, H. Kung, and S.A. Barnett, MRS Bull. 24, 20 (1999).

    Google Scholar 

  22. A. Misra and H. Kung, Adv. Eng. Mater. 3, 217 (2001).

    Article  Google Scholar 

  23. A. Misra, M.J. Demkowicz, J. Wang, and R.G. Hoagland, JOM 60, 39 (2008).

    Article  Google Scholar 

  24. N.A. Mara, D. Bhattacharyya, A. Misra, and R.G. Hoagland, Scripta Mater. 58, 874 (2008).

    Article  Google Scholar 

  25. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 92, 231901 (2008).

    Article  Google Scholar 

  26. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth, Phys. Rev. Lett. 100, 136102 (2008).

    Article  Google Scholar 

  27. R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann, Scripta Mater. 65, 1022 (2011).

    Article  Google Scholar 

  28. R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann, Acta Mater. 60, 2855 (2012).

    Article  Google Scholar 

  29. J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara, Acta Mater. 60, 1576 (2012).

    Article  Google Scholar 

  30. S.-B. Lee, J.E. LeDonne, S.C.V. Lim, I.J. Beyerlein, and A.D. Rollett, Acta Mater. 60, 1747 (2012).

    Article  Google Scholar 

  31. S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara, Acta Mater. (2012). doi:10.1016/j.actamat.2012.07.027.

  32. W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, and N.A. Mara, Appl. Phys. Lett. 100, 011911 (2012).

    Article  Google Scholar 

  33. K. Kang, J. Wang, and I.J. Beyerlein, J. App. Phys. 111, 053531 (2012).

    Article  Google Scholar 

  34. N.Q. Vo, R.S. Averback, Y. Ashkenazy, P. Bellon, and J. Wang, J. Mater. Res. 27, 1621 (2012).

    Article  Google Scholar 

  35. M.J. Demokowicz and L. Thilly, Acta Mater. 59, 7744 (2011).

    Article  Google Scholar 

  36. R.F. Zhang, J. Wang, X.Y. Liu, I.J. Beyerlein, and T.C. Germann (Paper presented at the Shock Compression of Condensed Matter 2011, AIP Conference Proceedings 1426, 2011), pp. 1251–1254.

  37. F.C. Frank, Report of the symposium on the plastic deformation of crystalline solids (Pittsburgh: Carnegie Institute of Technology, 1950), p. 150.

    Google Scholar 

  38. B.A. Bilby, Report of the Conference on Defects in Crystalline Solids (London: Physical Soc, 1955), p. 124.

    Google Scholar 

  39. R.C. Pond and J.P. Hirth, Solid State Phys. 47, 287 (1994).

    Article  Google Scholar 

  40. R.C. Pond, X. Ma, Y.W. Chai, and J.P. Hirth, Dislocations in Solids, Chap. 74 (Elsevier, Amsterdam, 2007).

  41. J.P. Hirth and R.C. Pond, Prog. Mater Sci. 56, 586 (2011).

    Article  Google Scholar 

  42. J. Wang, J.P. Hirth, R.C. Pond, and J.M. Howe, Acta Mater. 59, 241 (2011).

    Article  Google Scholar 

  43. J. Wang, A. Misra, and J.P. Hirth, Phys. Rev. B 83, 064106 (2011).

    Article  Google Scholar 

  44. J. Wang, J.P. Hirth, A. Misra, and X. Zhang, Appl. Phys. Lett. 95, 021908 (2009).

    Article  Google Scholar 

  45. J.S. Carpenter, X. Liu, A. Darbal, N.T. Nuhfer, R.J. McCabe, and S.C. Vogel, et al., Scripta Mater. 67, 336 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number 2008LANL1026. For the defect characterization method development, J.W. acknowledges support provided by the Los Alamos National Laboratory Directed Research and Development (LDRD) projects DR20110029 and ER20110573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Kang, K., Zhang, R.F. et al. Structure and Property of Interfaces in ARB Cu/Nb Laminated Composites. JOM 64, 1208–1217 (2012). https://doi.org/10.1007/s11837-012-0429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0429-7

Keywords

Navigation