Skip to main content

Advertisement

Log in

Modeling of Microstructure Evolution in Metallic Multilayers with Immiscible Constituents

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermal stabilities of Cu/Nb, Cu/Ag, and Cu/Mo multilayers are studied by a recently developed model for microstructure evolution in multilayers with immiscible constituents, which actually is an extension to the classic grooving theory. The experimentally evidenced zig–zag microstructure is found to form through grooving when grains are staggered in a “stair-like” fashion. Furthermore, stability maps for these systems are developed in terms of the aspect ratio of grain dimensions and the ratio of the distance between two nearest triple junctions to the in-plane grain size. A comparison of stability among the three systems shows that the ratio of the grain boundary energy to the interphase boundary energy is more important than the ratio of the two grain boundary energies in controlling the stability. A simple criterion is also proposed for a quick estimation of the stability. Both maps from the model and from the simple criterion are in good agreement with the experiments for multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.S. Budimana, N. Li, Q. Wei, and J.N. Baldwin, Thin Solid Films 519, 4137 (2011).

    Article  Google Scholar 

  2. M. Bobeth, M. Hecker, W. Pompe, C.M. Schneider, J. Thomas, A. Ullrich, and K. Wetzig, Z Metallk. 92, 810 (2001).

    Google Scholar 

  3. P. Troche, J. Hoffmann, K. Heinemann, G. Hartung, and G. Schmitz, Thin Solid Films 353, 33 (1999).

    Article  Google Scholar 

  4. G. Sharma, R.V. Ramanujan, and G.P. Tiwari, Acta Metall. 48, 875 (2000).

    Google Scholar 

  5. D. Srinivasan, S. Sanyal, C. Reed, and P.R. Subramanian, Metall. Mater. Trans. A 37A, 995 (2006).

    Article  Google Scholar 

  6. H.L. Knoedler, G.E. Lucas, and C.G. Levi, Metall. Mater. Trans. A 34A, 1043 (2003).

    Article  Google Scholar 

  7. D. Josell, W.C. Carter, and J.E. Bonevich, Nanostruct. Mater. 12, 387 (1999).

    Article  Google Scholar 

  8. A.C. Lewis, D. Josell, and T.P. Weihs, Scripta Mater. 48, 1079 (2003).

    Article  Google Scholar 

  9. A. Misra, R.G. Hoagland, and H. Kung, Philos. Mag. 84, 1021 (2004).

    Article  Google Scholar 

  10. A. Misra and R.G. Hoagland, J. Mater. Res. 20, 2046 (2005).

    Article  Google Scholar 

  11. D. Josell, S.R. Coriell, and G.B. McFadden, Acta Metall. Mater. 43, 1987 (1995).

    Article  Google Scholar 

  12. D. Josell and F. Spaepen, Mater. Res. Soc. Bull. 24, 39 (1999).

    Google Scholar 

  13. J. Wang and P.M. Anderson, Acta Mater. 53, 5089 (2005).

    Article  Google Scholar 

  14. M.D. Thouless, Acta Metall. Mater. 41, 1057 (1993).

    Article  Google Scholar 

  15. W.W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Article  Google Scholar 

  16. W.W. Mullins, J. Appl. Phys. 30, 77 (1959).

    Article  Google Scholar 

  17. U. Czubayko, V.G. Sursaeva, G. Gottstein, and L.S. Shvindlerman, Acta Mater. 46, 5863 (1998).

    Article  Google Scholar 

  18. M. Upmanye, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein, Acta Mater. 50, 1405 (2002).

    Article  Google Scholar 

  19. H. Wan, Y. Shen, J. Wang, Z. Shen, and X. Jin, Acta Mater. 60, 6869 (2012).

    Article  Google Scholar 

  20. D. Li, M.B. Robinson, and T.J. Rathz, J. Phase Equil. 21, 136 (2000).

    Article  Google Scholar 

  21. P.R. Subramanian and D.E. Laughlln, Bull. Alloy Phase Diagr. 11, 169 (1990).

    Article  Google Scholar 

  22. P.R. Subramanian and J.H. Perepezko, J. Phase Equil. 14, 62 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by National Science Foundation of China (NSFC) under project No. 50971090 and by State Key Development Program for Basic Research of China (973 Programs) (Grant No. 2012CB619600). Y. Shen also thanks the financial support by NSFC under project Nos. 50601018 and 50890174. J. Wang also acknowledges support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and a Los Alamos National Laboratory Directed Research and Development (LDRD) project (No. ER20110573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, H., Shen, Y., He, X. et al. Modeling of Microstructure Evolution in Metallic Multilayers with Immiscible Constituents. JOM 65, 443–449 (2013). https://doi.org/10.1007/s11837-012-0547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0547-2

Keywords

Navigation