Skip to main content
Log in

Thermomechanical Behavior of Developmental Thermal Barrier Coating Bond Coats

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermal expansion, microtensile, and stress relaxation experiments have been performed to contrast and compare the thermal and mechanical response of two experimental (L1 and H1) coatings provided by Honeywell Corporation (Morristown, NY). Thermal expansion experiments reveal that both coatings have coefficients of thermal expansion (CTE) that vary with temperature and that the CTE mismatch between the coatings and superalloy substrate is significant in the case of L1 as compared to H1. Values of the 0.2% offset yield stress (YS), Young’s modulus (E), and hardening exponent (n) are reported. Room-temperature microtensile experiments show higher strain hardening and a very low value of failure strain for L1 as compared to H1. At elevated temperatures, there is a significant decrease in the YS of as-received L1 for (924 MPa at room temperature to 85 MPa at 1000°C) as compared to H1. Finally, a power law creep description for high-temperature stress relaxation is developed and the measured values of the stress exponent (n = 3) and activation energies (Q creep = 200–250 kJ/mol) are shown to be consistent with power law creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.A. Miller, J. Therm. Spray Technol. 6, 35 (1997).

    Article  Google Scholar 

  2. N.P. Padture, M. Gell, and E.H. Jordan, Science 296, 280 (2002).

    Article  Google Scholar 

  3. A. Evans, D. Mumm, J. Hutchinson, G. Meier, and F. Pettit, Prog. Mater. Sci. 46, 505 (2001).

    Article  Google Scholar 

  4. Y. Touloukian, R. Kirby, R. Taylor, and P. Desai, ed., Thermophysical Properties of Matter—The TPRC Data Series, Vol. 12: Thermal ExpansionMetallic Elements and Alloys (New York: IFI/Plenum, 1975).

  5. J. James, J. Spittle, S. Brown, and R. Evans, Meas. Sci. Technol. 12, 1 (2001).

    Article  Google Scholar 

  6. D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker, Acta Mater. 51, 2205 (2003).

    Article  Google Scholar 

  7. J. Haynes, B. Pint, W. Porter, and I. Wright, Mater. High Temp. 21, 87 (2004).

    Article  Google Scholar 

  8. I. Riess, J. Phys. E: Sci. Instrum. 20, 257 (1987).

    Article  MathSciNet  Google Scholar 

  9. F. Raether, R. Springer, and S. Beyer, Mater. Res. Innov. 4, 245 (2001).

    Article  Google Scholar 

  10. M. Paganelli, Am. Ceram. Soc. Bull. 81, 25 (2002).

    Google Scholar 

  11. S. Bennett, J. Phys. E: Sci. Instrum. 10, 525 (1977).

    Article  Google Scholar 

  12. M. Okaji and H. Imai, J. Phys. E: Sci. Instrum. 20, 887 (1987).

    Article  Google Scholar 

  13. H. Wantanabe, N. Yamada, and M. Okaji, Int. J. Thermophys. 23, 543 (2002).

    Article  Google Scholar 

  14. M. Zupan and K.J. Hemker, Mater. Sci. Eng. A 319–321, 810 (2001).

    Google Scholar 

  15. M. Zupan, M.J. Hayden, C.J. Boehlert, and K.J. Hemker, Exp. Mech. 41, 242 (2001).

    Article  Google Scholar 

  16. M. Zupan and K.J. Hemker, Acta Mater. 51, 6277 (2003).

    Article  Google Scholar 

  17. K.J. Hemker and W.N. Sharpe, Annu. Rev. Mater. Res. 37, 93 (2007).

    Article  Google Scholar 

  18. K.J. Hemker, B.G. Mendis, and C. Eberl, Mater. Sci. Eng. A 483–484, 727 (2008).

    Google Scholar 

  19. B.G. Mendis, B. Tryon, T.M. Pollock, and K.J. Hemker, Surf. Coat. Technol. 201, 3918 (2006).

    Article  Google Scholar 

  20. B.G. Mendis and K.J. Hemker, Scripta Mater. 58, 255 (2008).

    Article  Google Scholar 

  21. R.J. Thompson (Ph.D. dissertation, Johns Hopkins University, 2008).

  22. R.J. Thompson and K.J. Hemker (Paper presented at the SEM Annual Conference & Exposition on Experimental and Applied Mechanics, 2007).

  23. J.S. Jones (Ph.D. dissertation, Johns Hopkins University, 2009).

  24. D.T. Butler (Ph.D. dissertation, Johns Hopkins University, 2009).

  25. C. Eberl, D.S. Gianola, and K.J. Hemker, Exp. Mech. 50 (1), 85 (2010).

  26. C. Eberl, D.S. Gianola, X. Wang, M.Y. He, A.G. Evans, and K.J. Hemker, Acta Mater. 59 (9), 3612 (2011).

  27. A. Pandey, A. Shyam, T.R. Watkins, E. Lara-Curzio, R.J. Stafford, and K.J. Hemker, Elastic Properties of Porous and Microcracked Ceramic Materials under Uniaxial Tension Loading (in review).

  28. A. Pandey, V.K. Tolpygoc, and K.J. Hemker, Temperature Dependence of the Anisotropy and Creep in the Second Generation Single Crystal Nickel Superalloy (in preparation).

Download references

Acknowledgements

The authors are grateful to Honeywell Corporation for providing samples and financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A., Tolpygo, V.K. & Hemker, K.J. Thermomechanical Behavior of Developmental Thermal Barrier Coating Bond Coats. JOM 65, 542–549 (2013). https://doi.org/10.1007/s11837-013-0551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0551-1

Keywords

Navigation