Skip to main content
Log in

Nucleation, Growth, and Aggregation of Alumina Inclusions in Steel

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Whether a nonmetallic inclusion is detrimental to steel properties or not depends on its size. The final size of an inclusion in steel is influenced by several factors, including nucleation, growth, and aggregation. In the current work, the thermodynamics for homogeneous nucleation of alumina was calculated, and the three-dimensional alumina morphologies after Al deoxidation were observed in laboratory. It is indicated by the calculation that, when the interfacial tension between steel melt and alumina is higher or the nucleus radius is larger, it is harder for alumina to nucleation. One minute after the deoxidation, many single-alumina particles with different shapes, including spherical, dendritic, flower, plate-like, and irregular, were observed. The formation of various shapes is due to different growth mechanisms. During the holding process after deoxidation, several types of aggregation morphologies were observed, such as disorderly type and regular type. Owing to the effects of sintering and Ostwald ripening, the aggregated inclusions changed from angular shape to smooth coral shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Bonilla, Ironmak. Steelmak. 22, 41 (1995).

    Google Scholar 

  2. H. Yasunaka, R. Yamanaka, T. Inoue, and T. Saito, Tetsu-To-Hagane 81, 529 (1995).

    Google Scholar 

  3. G. Domizzi, G. Anteri, and J. Ovejero-Garcia, Corrosion Sci. 43, 325 (2001).

    Article  Google Scholar 

  4. S. Basu, S.K. Choudhary, and N.U. Girase, ISIJ Int. 44, 1653 (2004).

    Article  Google Scholar 

  5. Ø. Grong, L. Kolbeinsen, C. van der Eijk, and G. Tranell, ISIJ Int. 46, 824 (2006).

    Article  Google Scholar 

  6. D.S. Sarma, A.V. Karasev, and P.G. Jonsson, ISIJ Int. 49, 1063 (2009).

    Article  Google Scholar 

  7. J.S. Byun, J.-H. Shim, Y.W. Cho, and D.N. Lee, Acta Mater. 51, 1593 (2003).

    Article  Google Scholar 

  8. F. Ishikawa, T. Takahashi, and T. Ochi, Metall. Mater. Trans. A 25, 929 (1994).

    Article  Google Scholar 

  9. H. Itoh, M. Hino, and S. Ban-ya, Tetsu-to-Hagane 83, 623 (1997).

    Google Scholar 

  10. H. Itoh, M. Hino, and S. Ban-ya, Tetsu-to-Hagane 83, 773 (1997).

    Google Scholar 

  11. H. Itoh, M. Hino, and S. Ban-ya, Tetsu-to-Hagane 83, 695 (1997).

    Google Scholar 

  12. H. Lei, K. Nakajima, and J.-C. He, ISIJ Int. 50, 1735 (2010).

    Article  Google Scholar 

  13. J. Zhang and H.-G. Lee, ISIJ Int. 44, 1629 (2004).

    Article  Google Scholar 

  14. L. Zhang and W. Pluschkell, Ironmak. Steelmak. 30, 106 (2003).

    Article  Google Scholar 

  15. L. Zhang, S. Taniguchi, and K. Cai, Metall. Mater. Trans. B 31, 253 (2000).

    Article  Google Scholar 

  16. Y. Kwon, J. Zhang, and H.-G. Lee, ISIJ Int. 46, 257 (2006).

    Article  Google Scholar 

  17. Y. Jin, Z. Liu, and R. Takata, ISIJ Int. 50, 371 (2010).

    Article  Google Scholar 

  18. H. Ohta and H. Suito, ISIJ Int. 46, 14 (2006).

    Article  Google Scholar 

  19. M.L. Turpin and J.F. Elliott, J. Iron Steel Inst. 204, 217 (1966).

    Google Scholar 

  20. D. Hilty and W. Crafts, Trans. AIME 188, 414 (1950).

    Google Scholar 

  21. I. Novokhatsky and B. Belov, Izvest. Akad. Nauk SSSR (3), 15 (1969).

  22. L. Rohde, A. Choudhury, and M. Wahlster, Arch. Eisenhuttenwesen 42, 165 (1971).

    Google Scholar 

  23. H. Schenck, E. Steinmetz, and K. Mehta, Arch. Eisenhuttenwesen 41, 131 (1970).

    Google Scholar 

  24. H. Suito, H. Inoue, and R. Inoue, ISIJ Int. 31, 1381 (1991).

    Article  Google Scholar 

  25. K. Wasai and K. Mukai, Metall. Mater. Trans. B 30, 1065 (1999).

    Article  Google Scholar 

  26. K. Wasai and K. Mukai, ISIJ Int. 42, 467 (2002).

    Article  Google Scholar 

  27. R. Dekkers, B. Blanpain, and P. Wollants, ISSTech 2003 Conference Proceedings, 2003, pp. 197–209.

  28. R. Dekkers, B. Blanpain, and P. Wollants, Metall. Mater. Trans. B 34, 161 (2003).

    Article  Google Scholar 

  29. R. Dekkers, B. Blanpain, P. Wollants, F. Haers, C. Vercruyssen, and B. Gommers, Ironmak. Steelmak. 29, 437 (2003).

    Article  Google Scholar 

  30. M.A. Van Ende, M.X. Guo, E. Zinngrebe, R. Dekkers, J. Proost, B. Blanpain, and P. Wollants, Ironmak. Steelmak. 36, 201 (2009).

    Article  Google Scholar 

  31. K. Wasai, K. Mukai, and A. Miyanaga, ISIJ Int. 42, 459 (2002).

    Article  Google Scholar 

  32. I. Sunagawa, Morphology of Crystals, Part B1987 (Tokyo, Japan: Terra Scientific Publishing, 1987).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grant No. 51274034), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality Steel Consortium at University of Science and Technology Beijing (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Duan, H., Zhang, L. et al. Nucleation, Growth, and Aggregation of Alumina Inclusions in Steel. JOM 65, 1173–1180 (2013). https://doi.org/10.1007/s11837-013-0687-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0687-z

Keywords

Navigation