Skip to main content
Log in

Cluster Variation Method

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The cluster variation method (CVM) has been widely employed to calculate alloy free energies. The atomistic feature of the CVM is coherent with first-principles electronic structure calculations. In the current manuscript, a detailed derivation of a simple pair approximation is demonstrated, which facilitates the introduction of the concept of atomic correlations. The recent progress of the continuous displacement CVM is briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.L. Bragg and E.J. Williams, Proc. R. Soc. Lond. A145, 699 (1934).

    Article  Google Scholar 

  2. R. Kikuchi, Phys. Rev. 81, 998 (1951).

    MathSciNet  Google Scholar 

  3. R. Kikuchi, J. Phase Equilib. 19, 412 (1998).

    Article  Google Scholar 

  4. R. Kikuchi, J. Chem. Phys. 23, 2327 (1955).

    Article  Google Scholar 

  5. T. Mohri, Alloy Physics, ed. W. Pfeiler (New York: Wiley-VCH, 2007).

  6. T. Mohri, Zairyo System Gaku (Materials Systems) (Tokyo, Japan: Asakura Shoten Co., 2002).

  7. R. Kikuchi and T. Mohri, Cluster Variation Method (Tokyo, Japan: Morikita Syuppan Co., 1997).

    Google Scholar 

  8. R. Kikuchi, J. Chem. Phys. 60, 1071 (1974).

    Article  Google Scholar 

  9. J.M. Sanchez, F. Ducastelle, and D. Gratias, Physica (Utrecht) 128A, 33 (1984).

    MathSciNet  Google Scholar 

  10. J.M. Sanchez and D. de Fontaine, Phys. Rev. B17, 2926 (1978).

    Article  Google Scholar 

  11. J.W. Connolly and A.R. Williams, Phys. Rev. B27, 5169 (1983).

    Article  Google Scholar 

  12. V. Morruzi, J.F. Janak, and K. Schwarz, Phys. Rev. B37, 790 (1988).

    Article  Google Scholar 

  13. T. Mohri, T. Morita, N. Kiyokane, and H. Ishii, J. Phase Equilib. Differ. 30, 553 (2009).

    Article  Google Scholar 

  14. Y. Chen, T. Atago, and T. Mohri, J. Phys.: Condens. Matter 14, 1903 (2002).

    Article  Google Scholar 

  15. T. Mohri and Y. Chen, Metall. Mater. Trans. 43, 2104 (2002).

    Google Scholar 

  16. Y. Chen, S. Iwata, and T. Mohri, CALPHAD 26, 583 (2002).

    Article  Google Scholar 

  17. T. Mohri and Y. Chen, Metall. Mater. Trans. 45, 1478 (2004).

    Google Scholar 

  18. T. Mohri and Y. Chen, J. Alloy. Compd. 383, 23 (2004).

    Article  Google Scholar 

  19. H.J.F. Jansen and A.J. Freeman, Phys. Rev. B30, 561 (1984).

    Article  Google Scholar 

  20. R.B. Scorzelli, I. Souza Azevedo, I. Ortalli, and G. Perdrazzi, Meteoritics 29, 530 (1994).

    Google Scholar 

  21. R. Kikuchi, Prog. Theor. Phys. Suppl. 35, 1 (1966).

    Article  Google Scholar 

  22. T. Mohri, Structural and Phase Stability of Alloys, ed. J.L. Moran-Lopez (New York: Plenum Press, 1992), p. 87.

  23. T. Mohri, Interatomic Potential and Structural Stability, ed. K. Terakura (Berlin: Springer-Verlag, 1993), p. 168.

  24. T. Mohri and T. Ikegami, Defect Diffus. Forum 95–98, 119 (1993).

    Article  Google Scholar 

  25. T. Mohri and T. Ikegami, Diffusion in Ordered Alloys, ed. B. Fultz (Warrendale, PA: TMS, 1993), p. 79.

  26. T. Mohri, SolidSolid Phase Transformations, ed. W.C. Johnson (Warrendale, PA: TMS, 1994), p. 54.

  27. T. Mohri, Statics and Dynamics of Alloy Phase Transformations, ed. P.E.A. Turchi (New York: Plenum Press, 1994), p. 665.

  28. T. Mohri, T. Nakahara, S. Takizawa, and T. Suzuki, J. Alloy. Compd. 220, 1 (1995).

    Article  Google Scholar 

  29. T. Mohri, Stability of Materials, ed. A. Gonis (New York: Plenum Press, 1996), p. 205.

  30. T. Mohri, C.-S. Oh, S. Takizawa, and T. Suzuki, Intermetallics 4, S3 (1996).

    Article  Google Scholar 

  31. T. Mohri, Y. Ichikawa, T. Nakahara, and T. Suzuki, Theory and Applications of the Cluster Variation and Path Probability Methods, ed. J.L. Moran-Lopez (New York: Plenum Press, 1996), p. 37.

  32. T. Mohri, Properties of Complex Inorganic Solids, ed. A. Gonis (New York: Plenum Press, 1997), p. 83.

  33. T. Mohri, Y. Ichikawa, and T. Suzuki, J. Alloy. Compd. 247, 98 (1997).

    Article  Google Scholar 

  34. T. Mohri and S. Miyagishima, Mater. Trans., JIM 39, 154 (1998).

    Google Scholar 

  35. T. Mohri, Z. Metallkund. 90, 71 (1999).

    Google Scholar 

  36. T. Mohri, Model. Simul. Mater. Sci. Eng. 8, 239 (2000).

    Article  Google Scholar 

  37. T. Mohri, Properties of Complex Inorganic Solid 2, ed. A. Meike (Dordrecht, The Netherlands: Kluwer Academic/Plenum Publishers, 2000), p. 123.

  38. T. Mohri, J.M. Sanchez, and D. de Fontaine, Acta Metall. 33, 1463 (1985).

    Article  Google Scholar 

  39. J.M. Sanchez, Physica 111A, 200 (1982).

    Google Scholar 

  40. D. de Fontaine, Acta Metall. 23, 553 (1975).

    Article  Google Scholar 

  41. L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002).

    Article  Google Scholar 

  42. T. Mohri, M. Ohno, and Y. Chen, J. Phase Equilib. Differ. 27, 47 (2006).

    Article  Google Scholar 

  43. T. Mohri, K. Terakura, T. Oguchi and K. Watanabe, Phase Transformation 87, ed. G.W. Lorimer (London, UK: The Institute of Metals, 1988), p. 433.

  44. R. Kikuchi and A. Beldjenna, Physica A182, 617 (1992).

    Google Scholar 

  45. R. Kikuchi and K. Masuda-Jindo, Comp. Mater. Sci. 14, 295 (1999).

    Article  Google Scholar 

  46. T. Mohri, Metall. Mater. Trans. 49, 2515 (2008).

    Google Scholar 

  47. T. Mohri, Int. J. Mater. Res. 100, 301 (2009).

    Article  Google Scholar 

  48. T. Mohri, Solid State Phenom. 172–174, 1119 (2011).

  49. Tetsuo Mohri, Comp. Mater. Sci. Eng. 49, 5181 (2010).

    Google Scholar 

  50. N. Kiyokane and T. Mohri, Philos. Mag. 93, 2316 (2013).

    Article  Google Scholar 

  51. T. Horiuchi, S. Takizawa, T. Suzuki, and T. Mohri, Metall. Mater. Trans. A 26A, 11 (1995).

    Article  Google Scholar 

  52. T.B. Massalski, Binary Phase Diagrams (Materials Park, OH: ASM International, 1986).

    Google Scholar 

  53. T. Mohri, Comp. Mater. Sci. Eng. 1, 1250018 (2012).

    Google Scholar 

  54. A. Finel and R. Tetot, Stability of Materials, ed. A. Gonis, P.E.A. Turchi, and J. Kudrnovsky, NATO ASI Series, p. 197 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Mohri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohri, T. Cluster Variation Method. JOM 65, 1510–1522 (2013). https://doi.org/10.1007/s11837-013-0738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0738-5

Keywords

Navigation