Skip to main content
Log in

Effect of Aluminum Content on Microstructure and Mechanical Properties of Al x CoCrFeMo0.5Ni High-Entropy Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-entropy alloys Al x CoCrFeMo0.5Ni with varied Al contents (x = 0, 0.5, 1.0, 1.5, and 2.0) have been designed based on the Al x CoCrCuFeNi system to improve mechanical properties for room and elevated temperatures. They have been investigated for microstructure and mechanical properties. As the aluminum content increases, the as-cast structure evolves from face-centered cubic dendrite + minor σ-phase interdendrite at x = 0 to B2 dendrite with body-centered cubic (bcc) precipitates + bcc interdendrite with B2 precipitates at x = 2.0. This confirms the strong bcc-forming tendency of Al. The room-temperature Vickers hardness starts from the lowest, HV 220, at x = 0, attains to the maximum, HV 720, at x = 1.0, and then decreases to HV 615 at x = 2.0. Compared with the base alloy system, the current alloy system has a superior combination of hardness and fracture toughness. In addition, Al x CoCrFeMo0.5Ni alloys except x = 0 display a higher hot hardness level than those of Ni-based superalloys, including In 718 and In 718 H, up to 1273 K and show great potential in high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Handbook Committee, Properties and Selection: Irons, Steels, and High Performance Alloys, 10th ed. (Metals Park: ASM International, 1990).

    Google Scholar 

  2. Handbook Committee, ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Metals Park: ASM International, 1990).

    Google Scholar 

  3. C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, Metall. Mater. Trans. A 35, 1465 (2004).

    Article  Google Scholar 

  4. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  5. J.W. Yeh, Ann Chim. Sci. Mater. 31, 633 (2006).

    Article  Google Scholar 

  6. J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Metall. Mater. Trans. A 35, 2533 (2004).

    Article  Google Scholar 

  7. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Corros. Sci. 47, 2257 (2005).

    Article  Google Scholar 

  8. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  9. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang, Metall. Mater. Trans. A 36, 881 (2005).

    Article  Google Scholar 

  10. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  11. J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu, J. Alloys Compd. 497, 52 (2010).

    Article  Google Scholar 

  12. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).

    Article  Google Scholar 

  13. C.Y. Hsu, T.S. Sheu, J.W. Yeh, and S.K. Chen, Wear 268, 653 (2010).

    Article  Google Scholar 

  14. C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, and J.W. Yeh, Adv. Eng. Mater. 12, 44 (2010).

    Article  Google Scholar 

  15. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Mater. Sci. Eng. A 527, 6975 (2010).

    Article  Google Scholar 

  16. C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, and S.K. Chen, Mater. Sci. Eng. A 528, 3581 (2011).

    Article  Google Scholar 

  17. C.C. Juan, C.Y. Hsu, C.W. Tsai, W.R. Wang, T.S. Sheu, J.W. Yeh, and S.K. Chen, Intermetallics 32, 401 (2013).

    Article  Google Scholar 

  18. Handbook Committee, Alloy Phase Diagrams, 10th ed. (Metals Park: ASM International, 1992).

    Google Scholar 

  19. B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Boston: Addison-Wesley, 1978).

    Google Scholar 

  20. G.E. Dieter, Mechanical Metallurgy, SI Metric Edition (London: McGraw-Hill, 1988).

    Google Scholar 

  21. W.D. Schubert, H. Neumeister, G. Kinger, and B. Lux, Int. J. Refract. Met. Hard Mater. 16, 133 (1998).

    Article  Google Scholar 

  22. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Acta Mater. 61, 4887 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Council of Taiwan under grant NSC 100-2221-E-007-049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jien-Wei Yeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CY., Juan, CC., Sheu, TS. et al. Effect of Aluminum Content on Microstructure and Mechanical Properties of Al x CoCrFeMo0.5Ni High-Entropy Alloys. JOM 65, 1840–1847 (2013). https://doi.org/10.1007/s11837-013-0753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0753-6

Keywords

Navigation