Skip to main content
Log in

Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The crystal lattice type is one of the dominant factors for controlling the mechanical behavior of high-entropy alloys (HEAs). For example, the yield strength at room temperature varies from 300 MPa for the face-centered-cubic (fcc) structured alloys, such as the CoCrCuFeNiTi x system, to about 3,000 MPa for the body-centered-cubic (bcc) structured alloys, such as the AlCoCrFeNiTi x system. The values of Vickers hardness range from 100 to 900, depending on lattice types and microstructures. As in conventional alloys with one or two principal elements, the addition of minor alloying elements to HEAs can further alter their mechanical properties, such as strength, plasticity, hardness, etc. Excessive alloying may even result in the change of lattice types of HEAs. In this report, we first review alloying effects on lattice types and properties of HEAs in five Al-containing HEA systems: Al x CoCrCuFeNi, Al x CoCrFeNi, Al x CrFe1.5MnNi0.5, Al x CoCrFeNiTi, and Al x CrCuFeNi2. It is found that Al acts as a strong bcc stabilizer, and its addition enhances the strength of the alloy at the cost of reduced ductility. The origins of such effects are then qualitatively discussed from the viewpoints of lattice-strain energies and electronic bonds. Quantification of the interaction between Al and 3d transition metals in fcc, bcc, and intermetallic compounds is illustrated in the thermodynamic modeling using the CALculation of PHAse Diagram method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Lu, Science 328, 319 (2010).

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A. Struct. Mater. 375, 213 (2004).

    Article  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  4. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  5. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  6. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).

    Article  Google Scholar 

  7. Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).

    Article  Google Scholar 

  8. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  9. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).

    Article  Google Scholar 

  10. O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Acta Mater. 61, 1545 (2013).

    Article  Google Scholar 

  11. C. Zhu, Z.P. Lu, and T.G. Nieh, Acta Mater. 61, 2993 (2013).

    Article  Google Scholar 

  12. Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw, Sci. Rep. 3, 1455 (2013).

    Google Scholar 

  13. W. Guo, W. Dmowski, J.-Y. Noh, P. Rack, P. Liaw, and T. Egami, Metall. Mater. Trans. A 44, 1994 (2013).

    Article  Google Scholar 

  14. T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Int. J. Miner. Metall. Mater. 20, 549 (2013).

    Article  Google Scholar 

  15. B.A. Welk, R.E.A. Williams, G.B. Viswanathan, M.A. Gibson, P.K. Liaw, and H.L. Fraser, Ultramicroscopy (in press)

  16. M.A. Laktionova, E.D. Tabchnikova, Z. Tang, and P.K. Liaw, Low Temp. Phys. 39, 630 (2013).

    Article  Google Scholar 

  17. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).

    Article  Google Scholar 

  18. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  19. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, and H.C. Shih, Corros. Sci. 50, 2053 (2008).

    Article  Google Scholar 

  20. C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, and H.C. Shih, Thin Solid Films 517, 1301 (2008).

    Article  Google Scholar 

  21. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Adv. Eng. Mater. 6, 74 (2004).

    Article  Google Scholar 

  22. G. Grimvall, Thermophysical Properties of Materials (Amsterdam: Elsevier, 1999).

    Google Scholar 

  23. M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, and E. Karapetrova, Appl. Phys. Lett. 100, 251907 (2012).

    Article  Google Scholar 

  24. C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, and S.-Y. Chang, Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  25. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Metall. Mater. Trans. A 36, 881 (2005).

    Article  Google Scholar 

  26. R. Sriharitha, B.S. Murty, and R.S. Kottada, Intermetallics 32, 119 (2013).

    Article  Google Scholar 

  27. H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Mater. Sci. Eng. B 163, 184 (2009).

    Article  Google Scholar 

  28. Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh, and S.-J. Lin, J. Alloys Compd. 509, 1607 (2011).

    Article  Google Scholar 

  29. W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  30. C. Li, M. Zhao, J.C. Li, and Q. Jiang, J. Appl. Phys. 104, 113504 (2008).

    Article  Google Scholar 

  31. Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh, J. Alloys Compd. 488, 57 (2009).

    Article  Google Scholar 

  32. Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, Corros. Sci. 52, 1026 (2010).

    Article  Google Scholar 

  33. C. Li, J.C. Li, M. Zhao, and Q. Jiang, J. Alloys Compd. 504, S515 (2010).

    Article  Google Scholar 

  34. X. Yang, Y. Zhang, and P.K. Liaw, Proc. Eng. 36, 292 (2012).

    Article  Google Scholar 

  35. O. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, and C. Woodward, J. Mater. Sci. 47, 4062 (2012).

    Article  Google Scholar 

  36. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mater. Sci. Eng. A. Struct. Mater. 565, 51 (2013).

    Article  Google Scholar 

  37. O.N. Senkov and C.F. Woodward, Mater. Sci. Eng. A 529, 311 (2011).

    Article  Google Scholar 

  38. W.H. Wang, Prog. Mater Sci. 57, 487 (2012).

    Article  Google Scholar 

  39. J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Mater. Sci. Forum 688, 419 (2011).

    Article  Google Scholar 

  40. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).

    Article  Google Scholar 

  41. C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, J. Alloys Compd. 490, 160 (2010).

    Article  Google Scholar 

  42. K. Zhang and Z. Fu, Intermetallics 28, 34 (2012).

    Article  Google Scholar 

  43. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Mater. Sci. Eng. A 508, 214 (2009).

    Article  Google Scholar 

  44. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu, Mater. Sci. Eng. A 491, 154 (2008).

    Article  Google Scholar 

  45. L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou, Intermetallics 17, 266 (2009).

    Article  Google Scholar 

  46. S. Guo, C. Ng, and C.T. Liu, J. Alloys Compd. 557, 77 (2013).

    Article  Google Scholar 

  47. S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, and J.-W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).

    Article  Google Scholar 

  48. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, and Y.S. Huang, Wear 261, 513 (2006).

    Article  Google Scholar 

  49. Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X.-L. Wang, L. Yang, K. An, and C.T. Liu, Scripta Mater. 64, 868 (2011).

    Article  Google Scholar 

  50. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, J. Alloys Compd. 485, L31 (2009).

    Article  Google Scholar 

  51. C.-C. Tung, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, Mater. Lett. 61, 1 (2007).

    Article  Google Scholar 

  52. S.G. Ma and Y. Zhang, Mater. Sci. Eng. A 532, 480 (2012).

    Article  Google Scholar 

  53. F.J. Wang, Y. Zhang, G.L. Chen, and H.A. Davies, J. Eng. Mater. Tech. Trans. ASME 131 (2009)

  54. Y. Zhang, S. Ma, and J. Qiao, Metall. Mater. Trans. A 1 (2011)

  55. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials (Hoboken, NJ: Wiley, 2009).

    Google Scholar 

  56. L.C. Tsao, C.S. Chen, and C.P. Chu, Mater. Des. 36, 854 (2012).

    Article  Google Scholar 

  57. K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).

    Article  Google Scholar 

  58. K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Nat. Phys. 7, 554 (2011).

    Article  Google Scholar 

  59. J.P. Sethna, K.A. Dahmen, and C.R. Myers, Nature 410, 242 (2001).

    Article  Google Scholar 

  60. J. Antonaglia, X. Xie, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, and K.A. Dahmen (unpublished results).

  61. P.S. Rudman, J. Stringer, R.I. Jaffee, and Battelle Memorial Institute, Phase Stability in Metals and Alloys (New York: McGraw-Hill, 1967).

    Google Scholar 

  62. W. Hume-Rothery, R.E. Smallman, and C.W. Haworth, The Structure of Metals and Alloys (London: Metals & Metallurgy Trust, 1969).

    Google Scholar 

  63. M. Widom, I. Al-Lehyani, and J.A. Moriarty, Phys. Rev. B 62, 3648 (2000).

    Article  Google Scholar 

  64. H. Hsieh, B. Toby, T. Egami, Y. He, S. Poon, and G. Shiflet, J. Mater. Res. 5, 2807 (1990).

    Article  Google Scholar 

  65. K. Ahn, D. Louca, S. Poon, and G. Shiflet, Phys. Rev. B 70, 224103 (2004).

    Article  Google Scholar 

  66. Y.Q. Cheng and E. Ma, Prog. Mater Sci. 56, 379 (2011).

    Article  MathSciNet  Google Scholar 

  67. Y. Cheng, E. Ma, and H. Sheng, Phys. Rev. Lett. 102, 245501 (2009).

    Article  Google Scholar 

  68. G.T. de Laissardière and T. Fujiwara, Phys. Rev. B 50, 5999 (1994).

    Article  Google Scholar 

  69. V. Fournée, E. Belin-Ferré, and J.-M. Dubois, J. Phys. 10, 4231 (1998).

    Google Scholar 

  70. V. Fournée, I. Mazin, D.A. Papaconstantopoulos, and E. Belin-Ferré, Philos. Mag. B 79, 205 (1999).

    Article  Google Scholar 

  71. J. Hafner, From Hamiltonians to Phase Diagrams (Cambridge: Cambridge University Press, 1987).

    Book  Google Scholar 

  72. C. Li, J.C. Li, M. Zhao, and Q. Jiang, J. Alloys Compd. 475, 752 (2009).

    Article  Google Scholar 

  73. W.M. Haynes and D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (Boca Raton, FL: CRC Press, 2010).

    Google Scholar 

  74. G.W.C. Kaye and T.H. Laby, Tables of Physical and Chemical Constants (New York: Longman, 1995).

    Google Scholar 

  75. W.W. Porterfield, Inorganic Chemistry: A Unified Approach (San Diego, CA: Academic Press, 1993).

    Google Scholar 

  76. T. Egami, Y. Waseda, and J. Non-Cryst, Solids 64, 113 (1984).

    Google Scholar 

  77. M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, and J.-W. Yeh, Acta Mater. 59, 6308 (2011).

    Article  Google Scholar 

  78. K. Zhang and Z. Fu, Intermetallics 22, 24 (2012).

    Article  Google Scholar 

  79. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).

    Article  Google Scholar 

  80. F. Boer, Cohesion in Metals: Transition Metal Alloys (Amsterdam: North-Holland, 1988).

    Google Scholar 

  81. X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).

    Article  Google Scholar 

  82. S. Guo, Q. Hu, C. Ng, and C.T. Liu, Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  83. A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).

    Article  Google Scholar 

  84. B. Sundman, B. Jansson, and J. Andersson, CALPHAD 9, 153 (1985).

    Article  Google Scholar 

  85. American Society for Metals, Metals Handbook (Cleveland, OH: The Society, 1990).

    Google Scholar 

  86. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  Google Scholar 

  87. T. Yang, Z. Tang, Y. Zhang, and P.K. Liaw (unpublished results).

  88. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, J. Mater. Sci. 45, 5158 (2010).

    Article  Google Scholar 

  89. S. Varalakshmi, M. Kamaraj, and B.S. Murty, Metall. Mater. Trans. A 41, 2703 (2010).

    Article  Google Scholar 

  90. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater Sci. 51, 427 (2006).

    Article  Google Scholar 

  91. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Mater. Sci. Eng. A 533, 107 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Zhi Tang, Tengfei Yang, Yanwen Zhang, and Takeshi Egami acknowledge the financial support from the Department of Energy (DOE), Office of Nuclear Energy’s Nuclear Energy University Program (NEUP) grant 00119262, with Drs. R.O. Jensen, L. Tian, and S. Lesica as program managers. Michael C. Gao acknowledges support of the Innovative Processing and Technologies Program of the National Energy Technology Laboratory’s (NETL) Strategic Center for Coal under the RES contract DE-FE-0004000. Haoyan Diao and Peter K. Liaw would like to acknowledge the DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855), with Mr. V. Cedro as program manager. Yongqiang Cheng is supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. Karin A. Dahmen and Peter K. Liaw thank the support from the project of DE-FE-0011194 with the program manager, Dr. S. Markovich.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Liaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Z., Gao, M.C., Diao, H. et al. Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems. JOM 65, 1848–1858 (2013). https://doi.org/10.1007/s11837-013-0776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0776-z

Keywords

Navigation