Skip to main content
Log in

Applications of Polymer Matrix Syntactic Foams

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.H. Rutz and J.C. Berg, Adv. Colloid Interface Sci. 160, 56 (2012).

    Article  Google Scholar 

  2. G. Hu and D. Yu, Mater. Sci. Eng. A 528, 5177 (2011).

    Article  Google Scholar 

  3. N. Gupta, E. Woldesenbet, R.S. Kishore, and S. Sankaran, J. Mater. Sci. 36, 4485 (2001).

    Article  Google Scholar 

  4. S.R. Kishore and S. Sankaran, Mater. Sci. Eng. A 412, 153 (2005).

    Article  Google Scholar 

  5. L. Zhang and J. Ma, Mater. Sci. Eng. A 574, 191 (2013).

    Article  Google Scholar 

  6. M. Porfiri and N. Gupta, Compos. B Eng. 40, 166 (2009).

    Article  Google Scholar 

  7. S.R. Kishore and S. Sankaran, J. Mater. Sci. 41, 7459 (2006).

    Article  Google Scholar 

  8. R.S. Kishore and S. Sankaran, J. Appl. Polym. Sci. 98, 673 (2005).

    Article  Google Scholar 

  9. R.S. Kishore and S. Sankaran, J. Appl. Polym. Sci. 98, 680 (2005).

    Article  Google Scholar 

  10. N. Gupta and V.C. Shunmugasamy, Mater. Sci. Eng. A 528, 7596 (2011).

    Article  Google Scholar 

  11. M. Porfiri, N. Nguyen, and N. Gupta, J. Mater. Sci. 44, 1540 (2009).

    Article  Google Scholar 

  12. V.C. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. 47, 5596 (2012).

    Article  Google Scholar 

  13. V. Shabde, K. Hoo, and G.M. Gladysz, J. Mater. Sci. 41, 4061 (2006).

    Article  Google Scholar 

  14. N. Gupta, S. Priya, R. Islam, and W. Ricci, Ferroelectrics 345, 1 (2006).

    Article  Google Scholar 

  15. V.C. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. accepted fpr publication (2013), doi: 10.1007/s10853-013-7691-0

  16. K.C. Yung, B.L. Zhu, T.M. Yue, and C.S. Xie, Compos. Sci. Technol. 69, 260 (2009).

    Article  Google Scholar 

  17. V.C. Shunmugasamy, N. Gupta, N.Q. Nguyen, and P.G. Coelho, Mater. Sci. Eng. A 527, 6166 (2010).

    Article  Google Scholar 

  18. N. Gupta, D. Pinisetty, and V.C. Shunmugasamy, Reinforced Polymer Matrix Syntactic Foams: Effect of Nano and Micro-Scale Reinforcement (New York: Springer, 2013).

    Book  Google Scholar 

  19. B. John and C.P. Reghunadhan Nair, Update on Syntactic Foams (Shropshire: Smithers Rapra Technology, 2010).

    Google Scholar 

  20. N. Gupta, E. Woldesenbet, and P. Mensah, Compos. A Appl. Sci. Manuf. 35, 103 (2004).

    Article  Google Scholar 

  21. L. Bardella, A. Sfreddo, C. Ventura, M. Porfiri, and N. Gupta, Mech. Mater. 50, 53 (2012).

    Article  Google Scholar 

  22. National Oceanic and Atmospheric Administration, http://oceanexplorer.noaa.gov/technology/subs/alvin/alvin.html. Accessed 7 Oct 2013.

  23. R.L. Poveda, G. Dorogokupets, and N. Gupta, Polym. Degrad. Stab. 98, 2041 (2012).

    Article  Google Scholar 

  24. http://en.wikipedia.org/wiki/File:USS_Memphis_(SSN-691).jpg. Accessed 7 Oct 2013.

  25. http://en.wikipedia.org/wiki/File:Zumwalt_Deckplate_Transit.jpg. Accessed 7 Oct 2013.

  26. http://en.wikipedia.org/wiki/File:FA-18_Hornet_VFA-41.jpg. Accessed 7 Oct 2013.

  27. M.Y. Chen, L.E. Matson, H. Lee, and C. Chen, SPIE Proc., Optic. Mater. Struct. Technol. IV (Bellingham, WA: SPIE, 2009), p. 74250S- 1-9.

  28. L.E. Matson and D.H. Mollenhauer, AMPTIAC Q. 8, 67 (2004).

    Google Scholar 

  29. S.D. Vining and P.J. Hood, SPIE Proceedings, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts, ed. H.A. MacEwen (Bellingham, WA: SPIE, 2004).

  30. R.L. Van Auken, U.S. patent 4,065,150 A (1977).

  31. G.W. Filice and E.H. Hoyt, Jr., U.S. patent 4,819,608A (1989).

  32. T.E. Cravens, J. Cell. Plast. 9, 260 (1973).

    Article  Google Scholar 

  33. D.W. Green, J.E. Winandy, and D.E. Kretschmann, Wood Handbook: Wood as an Engineering Material (Madison, WI: Forest Products Laboratory, 1999), pp. 1–45.

  34. T.F. Anderson, H.A. Walters, and C.W. Glesner, J. Cell. Plast. 6, 171 (1970).

    Article  Google Scholar 

  35. H. Mohammad and S. Kunigal, Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, 12–15 April 2010.

Download references

Acknowledgments

This work is supported by Office of Naval Research grant N00014-10-1-0988 with Dr. Yapa D.S. Rajapakse as the program manager. The authors thank 3M Co. and Oliver M. Strbik III of Deep Springs Technologies (Toledo, OH) for providing glass and SiC hollow particles, respectively, for imaging. Useful discussions with Dr. Gary Galdysz are acknowledged. James Cameron and Ron Allum are thanked for providing images of Deepsea Challenger. Peter Russell of Flotation Technologies, William Ricci and Ruth Clay of Trelleborg Offshore (Boston, MA), and Jeff Barker of Tooling Technologies LLC (Fort Loramie, OH) are thanked for providing images as indicated in the captions. Dr. Dung D. Luong provided the three-dimensional solid model images of syntactic foams.

Disclaimer

Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, ONR or the authors. The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the ONR, and shall not be used for advertising or product endorsement purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Zeltmann, S.E., Shunmugasamy, V.C. et al. Applications of Polymer Matrix Syntactic Foams. JOM 66, 245–254 (2014). https://doi.org/10.1007/s11837-013-0796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0796-8

Keywords

Navigation