Skip to main content
Log in

Deformation Behavior of Binary Mg-Y Alloy Under Dynamic Compression Loading

  • Published:
JOM Aims and scope Submit manuscript

This study examines Mg-Y binary alloys at a high strain rate of approximately 1 × 103 s−1 in compression by using a split Hopkinson pressure bar to elucidate the effect of yttrium in magnesium on mechanical anisotropy and other properties. As a result of high strain rate compression, Mg-0.6 at.%Y alloy showed less mechanical anisotropy, a lower strain hardening rate, and a larger compressive strain to failure of approximately 0.4, as compared with pure magnesium. Microstructure analysis by scanning electron microscopy/electron backscatter diffraction revealed that the addition of yttrium could release the stress concentration at the interface between the matrix and the {\( 10\bar{1}2 \)} c-axis tension twins by the formation of subgrains and lattice rotation around the c-axis during dynamic compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Halada and K. Ijima, Mater. Jpn. 43, 264 (2004).

    Article  Google Scholar 

  2. T. Mukai, H. Watanabe, and K. Higashi, Mater. Sci. Technol. 16, 1314 (2000).

    Article  Google Scholar 

  3. H. Somekawa, A. Singh, and T. Mukai, Philos. Mag. Lett. 89, 2 (2009).

    Article  Google Scholar 

  4. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Mater. Trans. 42, 1177 (2001).

    Article  Google Scholar 

  5. P. Mao, Z. Liu, and C. Wang, Mater. Sci. Eng. A 539, 13 (2012).

    Article  Google Scholar 

  6. E.A. Ball and P.B. Prangnell, Scr. Metall. Mater. 31, 111 (1994).

    Article  Google Scholar 

  7. S.R. Agnew, M.H. Yoo, and C.N. Tome, Acta Mater. 49, 4277 (2001).

    Article  Google Scholar 

  8. S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo, and T. Mohri, Mater. Trans. 49, 952 (2008).

    Article  Google Scholar 

  9. R. Ninomiya, H. Yukawa, M. Morinaga, and K. Kubota, J. Alloys Compd. 215, 315 (1994).

    Article  Google Scholar 

  10. S. Miura, S. Yamamoto, K. Ohkubo, and T. Mohri, Mater. Sci. Forum 350, 183 (2000).

    Article  Google Scholar 

  11. J. Bohlen, M.R. Nurnberg, J.W. Senn, D. Letzing, and S.R. Agnew, Acta Mater. 55, 2101 (2007).

    Article  Google Scholar 

  12. J. Geng, Y.B. Chun, N. Stanford, C.H.J. Davies, J.F. Nie, and M.R. Barneet, Mater. Sci. Eng. A 528, 3659 (2011).

    Article  Google Scholar 

  13. G.T. Gray, ASM Metals Handbook, 8th ed. (Materials Park, OH: ASM International, 2000), pp. 462–476.

    Google Scholar 

  14. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atweel, Acta Mater. 52, 5093 (2004).

    Article  Google Scholar 

  15. J. Koike, Metall. Mater. Trans. A 36A, 1689 (2005).

    Article  Google Scholar 

  16. D. Ando and J. Koike, J. Jpn. Inst. Met. 71, 684 (2007).

    Article  Google Scholar 

  17. V. Livescu, C.M. Cady, E.K. Cerreta, B.L. Henrie, and G.T. Gray III, Magnesium Technology 2006, ed. A.A. Luo, N.R. Neelameggham, and R.S. Beals (New York: Wiley, 2006), pp. 153–158.

    Google Scholar 

  18. M. Tsushida, K. Shikada, H. Kitahara, S. Ando, and H. Tonda, Mater. Trans. 49, 1157 (2008).

    Article  Google Scholar 

  19. H. Somekawa, Y. Osawa, A. Singh, K. Washio, A. Kato, and T. Mukai, Mater. Trans. 55, 182 (2014).

    Google Scholar 

  20. N. Stanford, I. Sabirov, G. Sha, A. La Fontaine, S.P. Ringer, and M.R. Barnett, Metall. Mater. Trans. A 41, 734 (2010).

    Article  Google Scholar 

  21. J.A. Yasi, L.G. Hector, and D.R. Trinkle, Acta Mater. 58, 5704 (2010).

    Article  Google Scholar 

  22. T. Tsuru, Y. Udagawa, M. Yamaguchi, M. Itakura, H. Kaburaki, and Y. Kaji, J. Phys. Condens. Mater. 25, 022202 (2013).

    Article  Google Scholar 

  23. S. Sandlobes, S. Zaefferer, I. Schestakow, S. Yi, and R.G. Martinez, Acta Mater. 59, 429 (2011).

    Article  Google Scholar 

  24. S. Sandlobes, M. Friak, S. Zaefferer, A. Dick, S. Yi, D. Letzing, Z. Pei, J.F. Zhu, J. Neugebauer, and D. Raabe, Acta Mater. 60, 3011 (2012).

    Article  Google Scholar 

  25. J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, and S.R. Agnew, Metall. Mater. Trans. 43A, 1347 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Toyota Motor Corporation and by a Grant-in-Aid for Scientific Research (No. 25246012) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The author (T. M.) thanks Profs. Kazuhiro Hono and Tadakatsu Ohkubo at National Institute for Materials Science, Japan, for the use of 3DAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiji Mukai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagao, M., Terada, T., Somekawa, H. et al. Deformation Behavior of Binary Mg-Y Alloy Under Dynamic Compression Loading. JOM 66, 305–311 (2014). https://doi.org/10.1007/s11837-013-0854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0854-2

Keywords

Navigation