Skip to main content
Log in

Predicting the Lifetimes of Nuclear Waste Containers

  • Published:
JOM Aims and scope Submit manuscript

Abstract

As for many aspects of the disposal of nuclear waste, the greatest challenge we have in the study of container materials is the prediction of the long-term performance over periods of tens to hundreds of thousands of years. Various methods have been used for predicting the lifetime of containers for the disposal of high-level waste or spent fuel in deep geological repositories. Both mechanical and corrosion-related failure mechanisms need to be considered, although until recently the interactions of mechanical and corrosion degradation modes have not been considered in detail. Failure from mechanical degradation modes has tended to be treated through suitable container design. In comparison, the inevitable loss of container integrity due to corrosion has been treated by developing specific corrosion models. The most important aspect, however, is to be able to justify the long-term predictions by demonstrating a mechanistic understanding of the various degradation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J. Ahn and M. Apted, Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste (Oxford, UK: Woodhead Publishing, 2010).

    Book  Google Scholar 

  2. F. King, Comprehensive Nuclear Materials (Oxford, UK: Elsevier, 2010).

    Google Scholar 

  3. F. King and D.W. Shoesmith, Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, chap. 13, ed. J. Ahn and M. Apted (Oxford, UK: Woodhead Publishing, 2010).

  4. D.W. Shoesmith, Corrosion 62, 703 (2006).

    Article  Google Scholar 

  5. R.N. Parkins, ed., Life Prediction of Corrodible Structures (Houston, TX: NACE International, 1994), pp. 497–512.

    Google Scholar 

  6. T. Shoji and T. Shibata, Proceedings of the International Symposium on Plant Aging and Life Prediction of Corrodible Structures (Houston, TX: NACE International, 1997).

    Google Scholar 

  7. J.R. Scully and D.W. Shoesmith, eds., Proceedings of the CORROSION/2003 Research Topical Symposium: Modeling and Prediction of Lifetimes for Corrodible Structures (Houston, TX: NACE International, 2003).

  8. Swedish Corrosion Institute, Copper as Canister Material for Unreprocessed Nuclear Waste - Evaluation with Respect to Corrosion, Swedish Nuclear Fuel Supply Company Report, KBS-TR-90 (Stockholm, Sweden: Kärnbränslesäkerhet, 1978).

    Google Scholar 

  9. R. Sandström and H.C.M. Andersson, J. Nucl. Mater. 372, 76 (2008).

    Article  Google Scholar 

  10. R. Patel, C. Punshon, J. Nicholas, P. Bastid, R. Zhou, C. Schneider, N. Bagshaw, D. Howse, E. Hutchinson, R. Asano, and F. King, Canister Design Concepts for Disposal of Spent Fuel and High Level Waste, Nagra Technical Report, NTB 12-06 (Wettingden, Switzerland: National Cooperative for the Disposal of Radioactive Waste, 2012).

  11. Svensk Kärnbränslehantering AB, Long-Term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark, Main Report of the SR-Site project. Swedish Nuclear Fuel and Waste Management Company Report, SKB TR 11-01 (Stockholm, Sweden: Svensk Kärnbränslehantering AB, 2011).

  12. H. Asano, A. Nakamura, and M. Kobayashi, Corros. Eng. Sci. Technol. 46, 165 (2011).

    Article  Google Scholar 

  13. D. Sanderson, P. Gardner, and F. King, The Use of Failure Assessment Diagrams to Evaluate the Durability of HLW and Spent Fuel Waste Containers, AMEC Report for the UK Nuclear Decommissioning Authority, 17697/TR/05 (Oxfordshire, UK: National Decommissioning Authority, 2013), www.nda/gov.uk/documents/biblio/.

  14. Svensk Kärnbränslehantering AB, Fuel and Canister Process Report for the Safety Assessment SR-Site. Swedish Nuclear Fuel and Waste Management Company Report, SKB TR 10-46 (Stockholm, Sweden: Svensk Kärnbränslehantering AB, 2010).

  15. L.H. Johnson, D.M. LeNeveu, D.W. Shoesmith, D.W. Oscarson, M.N. Gray, R.J. Lemire, and N.C. Garisto, The Disposal of Canadas Nuclear Fuel Waste: The Vault Model for Postclosure Assessment, Atomic Energy of Canada Limited Report, AECL-10714, COG-93-4 (Ontario, Canada: Atomic Energy of Canada, 1994).

  16. Svensk Kärnbränslehantering AB, Design Analysis Report for the Canister, Swedish Nuclear Fuel and Waste Management Company Report, SKB TR 10-28 (Svensk Kärnbränslehantering AB: Stockholm, Sweden, 2010).

    Google Scholar 

  17. P. Keech, Nuclear Waste Management Organization, Toronto, unpublished work, 2013.

  18. Department of Energy, Yucca Mountain Repository License Application, DOE/RW-0573 (Washington, DC: U.S. Department of Energy, 2008).

    Google Scholar 

  19. F. Hua, K. Mon, P. Pasupathi, G. Gordon, and D. Shoesmith, Corrosion 61, 987 (2005).

    Article  Google Scholar 

  20. F. Hua and G. Gordon, Corrosion 60, 764 (2004).

    Article  Google Scholar 

  21. D.D. Macdonald, J. Nucl. Mater. 379, 24 (2008).

    Article  Google Scholar 

  22. L.H. Johnson and F. King, J. Nucl. Mater. 379, 9 (2008).

    Article  Google Scholar 

  23. B. Kursten, E. Smailos, I. Azkarate, L. Werme, N.R. Smart, and G. Santarini, COBECOMA, State-of-the-Art Document on the Corrosion Behaviour of Container Materials, European Commission, Contract N° FIKW-CT-20014-20138 Final Report (Brussels, Belgium: European Commission, 2004).

    Google Scholar 

  24. Svensk Kärnbränslehantering AB, Corrosion Calculations Report for the Safety Assessment SR-Site, Swedish Nuclear Fuel Supply Company Report SKB TR-10-66 (Stockholm, Sweden: Svensk Kärnbränslehantering AB, 2010).

    Google Scholar 

  25. F. King, M. Kolar, and P. Maak, J. Nucl. Mater. 379, 133 (2008).

    Article  Google Scholar 

  26. F. King, M. Kolar, M. Vähänen, and C. Lilja, Corros. Eng. Sci. Technol. 46, 217 (2011).

    Article  Google Scholar 

  27. F. King, Overview of a Carbon Steel Container Corrosion Model for a Deep Geological Repository in Sedimentary Rock, Nuclear Waste Management Organization Report No.: NWMO TR-2007-01 (Ontario, Canada: Nuclear Waste Management Organization, 2007).

  28. L.G. McMillion, D.A. Jones, A. Sun, and D.D. Macdonald, Metall. Mater. Trans. A 36, 1129 (2005).

    Article  Google Scholar 

  29. D.D. Macdonald, J. Electrochem. Soc. 139, 3434 (1992).

    Article  Google Scholar 

  30. L. Werme, P. Sellin, and N. Kjellbert, Copper Canisters for Nuclear High Level Waste Disposal: Corrosion Aspects, Swedish Nuclear Fuel and Waste Management Company Technical Report, TR 92-26 (Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Co., 1992).

    Google Scholar 

  31. Swedish Corrosion Institute, The Corrosion Resistance of a Copper Canister for Spent Nuclear FuelFollow Up, SKBF/KBS TR 83-24 (Stockholm, Sweden: Swedish Corrosion Institute, 1983).

  32. Japan Nuclear Cycle, H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Japan Nuclear Cycle Development Institute, Supporting Report 2, Repository Design and Engineering Technology (Ibaraki, Japan: Japan Nuclear Cycle, 2000).

  33. K.G. Mon, G.M. Gordon, and R.B. Rebak, Proceedings of the 12th International Conference Environmental Degradation of Materials in Nuclear Power SystemWater Reactors, ed. T.R. Allen, P.J. King, and L. Nelson (Warrendale, PA: The Minerals, Metals & Materials Society, 2005), pp. 1431–1438.

  34. F. King and D. LeNeveu, Proceedings of Conference on Nuclear Waste Packaging, FOCUS ‘91 (La Grange Park, IL: American Nuclear Society, 1992), pp. 253–261.

  35. D.S. Dunn, G.A. Cragnolino, and N. Sridhar, Proceedings of the CORROSION/96 (Houston, TX: NACE International, 1996).

  36. F. King, C. Lilja, K. Pedersen, P. Pitkänen, and M. Vähänen, An Update of the State-of-the-Art Report on the Corrosion of Copper Under Expected Conditions in a Deep Geologic Repository, Swedish Nuclear Fuel Supply Company Report SKB TR-10-67, Posiva Oy Report POSIVA 2011-01 (Svensk Kärnbränslehantering AB: Stockholm, Sweden, 2011).

    Google Scholar 

  37. S.M. Sharland and P.W. Tasker, Corros. Sci. 28, 603 (1988).

    Article  Google Scholar 

  38. S.M. Sharland, Corros. Sci. 28, 621 (1988).

    Article  Google Scholar 

  39. S.M. Sharland, C.P. Jackson, and A.J. Diver, Corros. Sci. 29, 1149 (1989).

    Article  Google Scholar 

  40. S.M. Sharland, Corros. Sci. 33, 183 (1992).

    Article  Google Scholar 

  41. P.L. Andresen, G.M. Gordon, and S.C. Lu, JOM 27 (2005).

  42. A. Turnbull, A Review of the Possible Effects of Hydrogen on Lifetime of Carbon Steel Nuclear Waste Containers, National Cooperative for the Disposal of Radioactive Waste, Nagra Technical Report NTB 09-04 (Nagra: Wettingen, Switzerland, 2009).

    Google Scholar 

  43. G. Nakayama, Y. Sakakibara, Y. Taniyama, H. Cho, T. Jintoku, S. Kawakami, and M. Takemoto, J. Nucl. Mater. 379, 174 (2008).

    Article  Google Scholar 

  44. F. King, Corrosion 65, 233 (2009).

    Article  Google Scholar 

  45. S. Stroes-Gascoyne and J.M. West, Can. J. Microbiol. 42, 349 (1996).

    Article  Google Scholar 

  46. G.P. Marsh and K.J. Taylor, Corros. Sci. 28, 289 (1988).

    Article  Google Scholar 

  47. S. Stroes-Gascoyne, The Potential for Microbial Life in a Canadian High-Level Nuclear Fuel Waste Disposal Vault: A Nutrient and Energy Source Analysis, Atomic Energy of Canada Limited Report, AECL-9574 (Manitoba, Canada: Whiteshell Nuclear Research Establishment, 1989).

  48. J. Farmer, D. McCright, G. Gdowski, F. Wang, T. Summers, P. Bedrossian, J. Horn, T. Lian, J. Estill, A. Lingenfelter, and W. Halsey, Proceedings of the Transportation, Storage, and Disposal of radioactive Materials2000, PVP-Vol. 408 (New York: American Society of Mechanical Engineers, 2000), pp. 53–69.

  49. F. King, M. Kolar, S. Stroes-Gascoyne, and P. Maak, Mater. Res. Soc. Symp. Proc. 807, 811 (2004).

    Article  Google Scholar 

  50. F. King, M. Kolar, and D.W. Shoesmith, CORROSION 96 (Houston, TX: NACE International, 1996).

    Google Scholar 

  51. X. He, J.J. Noël, and D.W. Shoesmith, Corros. Sci. 47, 1177 (2005).

    Article  Google Scholar 

  52. F. King and M. Kolar, Proceedings of the 11th International High-Level Radioactive Waste Management Conference (La Grange Park, IL: American Nuclear Society 2006), pp. 478–485.

  53. P. Humphreys, T. Johnstone, D. Trivedi, and A. Hoffmann, Mater. Res. Soc. Symp. Proc. 353, 211 (1995).

    Article  Google Scholar 

  54. K.S. Hunter, Y. Wang, and P. Van Cappellen, J. Hydrol 209, 53 (1998).

    Article  Google Scholar 

  55. J.S. Kindred and M.A. Celia, Water Resour. Res. 25, 1149 (1989).

    Article  Google Scholar 

  56. W. Kinzelbach and W. Schäfer, Water Resour. Res. 27, 1123 (1991).

    Article  Google Scholar 

  57. F.J. Molz, M.A. Widdowson, and L.D. Benefield, Water Resour. Res. 22, 1207 (1986).

    Article  Google Scholar 

  58. H. Prommer, D.A. Barry, and G.B. Davis, Environ. Modell. Soft. 14, 213 (1999).

    Article  Google Scholar 

  59. H. Prommer, D.A. Barry, and G.B. Davis, Ecol. Modell. 128, 181 (2000).

    Article  Google Scholar 

  60. B. Little, P. Wagner, and F. Mansfeld, Int. Mater. Rev. 36, 253 (1991).

    Article  Google Scholar 

  61. B. Little and P. Wagner, Can. J. Microbiol. 42, 367 (1996).

    Article  Google Scholar 

  62. T.L. Kieft, W.P. Kovacik, D.B. Ringelberg, D.C. White, D.L. Haldeman, P.S. Amy, and L.E. Hersman, Appl. Environ. Microbiol. 63, 3128 (1997).

    Google Scholar 

  63. T.A. Else, C.R. Pantle, and P.S. Amy, Appl. Environ. Microbiol. 69, 5006 (2003).

    Article  Google Scholar 

  64. M.T. Madigan, J.M. Martinko, and J. Parker, Brock Microbiology of Microorganisms (Upper Saddle River, NJ: Prentice Hall, 2000).

    Google Scholar 

  65. I. Crossland, Paper presented at ICEM’05: 10th International Conference on Environmental Remediation and Radioactive Waste Management (Glasgow, Scotland, 4–8 September 2005), paper ICEM05-1272.

  66. R.O. Hallberg, P. Östlund, and T. Wadsten, Appl. Geochem. 3, 273 (1988).

    Article  Google Scholar 

  67. F. King, Appl. Geochem. 10, 477 (1995).

    Article  Google Scholar 

  68. J. Monnier, L. Legrand, L. Bellot-Gurlet, E. Foy, S. Reguer, E. Rocca, P. Dillmann, D. Neff, F. Mirambet, S. Perrin, and I. Guillot, J. Nucl. Mater. 379, 105 (2008).

    Article  Google Scholar 

  69. D. Neff, P. Dillmann, L. Bellot-Gurlet, and G. Beranger, Corros. Sci. 47, 515 (2005).

    Article  Google Scholar 

  70. D. Neff, P. Dillmann, M. Descostes, and G. Beranger, Corros. Sci. 48, 2947 (2006).

    Article  Google Scholar 

  71. M. Saheb, D. Neff, P. Dillmann, H. Matthieson, and E. Foy, J. Nucl. Mater. 379, 118 (2008).

    Article  Google Scholar 

  72. M. Saheb, M. Descostes, D. Neff, H. Matthiesen, A. Michelin, and P. Dillmann, Appl. Geochem. 25, 1937 (2010).

    Article  Google Scholar 

  73. M. Saheb, F. Marsal, H. Matthiesen, D. Neff, P. Dillmann, and D. Pellegrini, Corros. Eng. Sci. Technol. 46, 199 (2011).

    Article  Google Scholar 

  74. H. Yoshikawa, E. Gunji, and M. Tokuda, J. Nucl. Mater. 379, 112 (2008).

    Article  Google Scholar 

  75. H. Yoshikawa, S. Lee, and T. Matsui, Corrosion 65, 227 (2009).

    Article  Google Scholar 

  76. Å. Bresle, J. Saers, and B. Arrhenius, Studies in Pitting Corrosion on Archaeological Bronzes, Swedish Nuclear Fuel and Waste Management Company Report, SKB TR 83-05 (Stockholm, Sweden: University of Stockholm, 1983).

    Google Scholar 

  77. D. Féron, D. Crusset, and J.-M. Gras, Corrosion 65, 213 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fraser King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, F. Predicting the Lifetimes of Nuclear Waste Containers. JOM 66, 526–537 (2014). https://doi.org/10.1007/s11837-014-0869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0869-3

Keywords

Navigation