Skip to main content
Log in

The Microstructural Design of Trimodal Aluminum Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Trimodal composites, consisting of nanocrystalline or ultrafine grains (UFGs), coarse grains (CGs), and ceramic particles, were originally formulated to achieve combinations of physical and mechanical properties that are unattainable with the individual phases, such as strength, ductility, and high-strain-rate deformation. The concept of a trimodal structure is both scientifically novel as well as technologically promising because it provides multiple controllable degrees of freedom that allow for extensive microstructure design. The UFGs provide efficient obstacles for dislocation movement, such as grain boundaries and other crystalline defects. The size, distribution, and spatial arrangement of the CGs can be controlled to provide plasticity during deformation. The size, morphology, and distribution of the reinforcement particles can be tailored to attain various engineering and physical properties. Moreover, the interfaces that form among the various phases also help determine the overall behavior of the trimodal composites. In this article, a review is provided to discuss the selection and design of each component in trimodal Al composites. The toughening and strengthening mechanisms in the trimodal composite structure are discussed, paying particular attention to strategies that can be implemented to tailor microstructures for optimal mechanical behavior. Recent results obtained with high-performance trimodal Al composites that contain nanometric reinforcements are also discussed to highlight the ability to control particle–matrix interface characteristics. Finally, a perspective is provided on potential approaches that can be explored to develop the next generation of trimodal composites, and interesting scientific paradigms that evolve from the proposed design strategies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt, and J.M. Schoenung, Trends in Materials and Manufacturing Technologies for Transportation Industries and Powder Metallurgy Research and Development in the Transportation Industry, ed. T. Bieler, J.E. Carsley, H.L. Fraser, J.W. Sears, and J.E. Smugeresky (Warrendale, PA: TMS, 2005), pp. 383–389.

  2. J. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt, and J.M. Schoenung, Scripta Mater. 53, 481 (2005).

    Article  Google Scholar 

  3. H. Zhang, J. Ye, S.P. Joshi, J.M. Schoenung, E.S.C. Chin, and K.T. Ramesh, Scripta Mater. 59, 1139 (2008).

    Article  Google Scholar 

  4. H.T. Zhang, J.C. Ye, S.P. Joshi, J.M. Schoenung, E.S.C. Chin, G.A. Gazonas, and K.T. Ramesh, Adv. Eng. Mater. 9, 355 (2007).

    Article  Google Scholar 

  5. Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, Mater. Sci. Eng. A 527, 305 (2009).

    Article  Google Scholar 

  6. Y. Li, Z. Zhang, R. Vogt, J.M. Schoenung, and E.J. Lavernia, Acta Mater. 59, 7206 (2011).

    Article  Google Scholar 

  7. Z.H. Zhang, T. Topping, Y. Li, R. Vogt, Y.Z. Zhou, C. Haines, J. Paras, D. Kapoor, J.M. Schoenung, and E.J. Lavernia, Scripta Mater. 65, 652 (2011).

    Article  Google Scholar 

  8. R. Vogt, Z. Zhang, E. Huskins, B. Ahn, S. Nutt, K.T. Ramesh, E.J. Lavernia, and J.M. Schoenung, Mater Sci. Eng. A 527, 5990 (2010).

    Article  Google Scholar 

  9. J. Ye, B.Q. Han, and J.M. Schoenung, Philos. Mag. Lett. 86, 721 (2006).

    Article  Google Scholar 

  10. J.M. Schoenung, J. Ye, J. He, F. Tang, and D. Witkin, Mater. Forum 29, 123 (2005).

    Google Scholar 

  11. R.G. Vogt, Z. Zhang, T.D. Topping, E.J. Lavernia, and J.M. Schoenung, J. Mater. Process. Technol. 209, 5046 (2009).

    Article  Google Scholar 

  12. J. Ye, J. He, and J. Schoenung, Metall. Mater. Trans. A 37, 3099 (2006).

    Article  Google Scholar 

  13. Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, Mater. Sci. Eng. A 527, 305 (2009).

    Article  Google Scholar 

  14. R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, Scripta Mater. 61, 1052 (2009).

    Article  Google Scholar 

  15. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia, Scripta Mater. 49, 297 (2003).

    Article  Google Scholar 

  16. D.B. Witkin and E.J. Lavernia, Prog. Mater. Sci. 51, 1 (2006).

    Article  Google Scholar 

  17. E.J. Lavernia, B.Q. Han, and J.M. Schoenung, Mater Sci. Eng. A 493, 207 (2008).

    Article  Google Scholar 

  18. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  19. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia, Acta Mater. 51, 2777 (2003).

    Article  Google Scholar 

  20. K.K. Ma and J.M. Schoenung, Philos. Mag. Lett. 90, 739 (2010).

    Article  Google Scholar 

  21. K. Ma, E.J. Lavernia, and J.M. Schoenung, Adv. Eng. Mater. 14, 77 (2011).

    Article  Google Scholar 

  22. Y. Li, W. Liu, V. Ortalan, W.F. Li, Z. Zhang, R. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, Acta Mater. 58, 1732 (2010).

    Article  Google Scholar 

  23. R. Vogt, Z. Zhang, E. Huskins, B. Ahn, S. Nutt, K.T. Ramesh, E.J. Lavernia, and J.M. Schoenung, Mater. Sci. Eng. A 527, 5990 (2010).

    Article  Google Scholar 

  24. Y. Xiang, T. Li, Z.G. Suo, and J.J. Vlassak, Appl. Phys. Lett. 87, 161910–161911 (2005).

    Article  Google Scholar 

  25. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Science 331, 1587 (2011).

    Article  Google Scholar 

  26. K.S. Chan, Metall. Trans. A 23, 183 (1992).

    Article  Google Scholar 

  27. L.R.F. Rose, Int. J. Fract. 31, 233 (1986).

    Article  Google Scholar 

  28. S. Suresh, Metall. Trans. A 16, 249 (1985).

    Article  Google Scholar 

  29. B. Budiansky, J.C. Amazigo, and A.G. Evans, J. Mech. Phys. Solids 36, 167 (1988).

    Article  Google Scholar 

  30. X.Z. Kai, Z.Q. Li, W.L. Zhang, G.L. Fan, L. Jiang, W.J. Lu, and D. Zhang, Mater Sci. Eng. A 530, 574 (2011).

    Article  Google Scholar 

  31. L. Jiang, Z.Q. Li, G.L. Fan, and D. Zhang, Scripta Mater. 65, 412 (2011).

    Article  Google Scholar 

  32. L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao, and D. Zhang, Scripta Mater. 66, 331 (2012).

    Article  Google Scholar 

  33. Y.T. Zhu and X.Z. Liao, Nat. Mater. 3, 351 (2004).

    Article  Google Scholar 

  34. Y. Li, Y.J. Lin, Y.H. Xiong, J.M. Schoenung, and E.J. Lavernia, Scripta Mater. 64, 133 (2011).

    Article  Google Scholar 

  35. K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).

    Article  Google Scholar 

  36. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, Science 304, 422 (2004).

    Article  Google Scholar 

  37. K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, Science 321, 1066 (2008).

    Article  Google Scholar 

  38. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Nat. Mater. 1, 45 (2002).

    Article  Google Scholar 

  39. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov, Appl. Phys. Lett. 84, 592 (2004).

    Article  Google Scholar 

  40. H. Van Swygenhoven, Science 296, 66 (2002).

    Article  Google Scholar 

  41. X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu, Appl. Phys. Lett. 83, 632 (2003).

    Article  Google Scholar 

  42. B.Q. Han, Z. Lee, D. Witkin, S. Nutt, and E.J. Lavernia, Metall. Mater. Trans. A 36A, 957 (2005).

    Article  Google Scholar 

  43. A. Magee, L. Ladani, T.D. Topping, and E.J. Lavernia, Acta Mater. 60, 5838 (2012).

    Article  Google Scholar 

  44. S. Nelson, L. Ladani, T. Topping, and E. Lavernia, Acta Mater. 59, 3550 (2011).

    Article  Google Scholar 

  45. Z. Lee, V. Radmilovic, B. Ahn, E.J. Lavernia, and S.R. Nutt, Metall. Mater. Trans. A 41A, 795 (2010).

    Article  Google Scholar 

  46. B.M. Ahn, E.J. Lavernia, and S.R. Nutt, J. Mater. Sci. 43, 7403 (2008).

    Article  Google Scholar 

  47. S.P. Joshi, K.T. Ramesh, B.Q. Han, and E.J. Lavernia, Metall. Mater. Trans. A 37A, 2397 (2006).

    Article  Google Scholar 

  48. B.Q. Han, J.Y. Huang, Y.T. Zhu, and E.J. Lavernia, Acta Mater. 54, 3015 (2006).

    Article  Google Scholar 

  49. G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia, Acta Mater. 54, 1759 (2006).

    Article  Google Scholar 

  50. P.S. Pao, H.N. Jones, C.R. Feng, D.B. Witkin, and E.J. Lavernia, Ultrafine Grained Materials IV, ed. Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.I. Semiatin, and T.C. Lowe (San Antonio, TA: TMS, 2006), pp. 331–336.

  51. Z. Lee, D.B. Witkin, V. Radmilovic, E.J. Lavernia, and S.R. Nutt, Mater. Sci. Eng. A 410, 462 (2005).

    Article  Google Scholar 

  52. R.Q. Ye, B.Q. Han, and E.J. Lavernia, Metall. Mater. Trans. A 36A, 1833 (2005).

    Article  Google Scholar 

  53. J. He, J. Ye, E.J. Lavernia, D. Matejczyk, C. Bampton, and J.M. Schoenung, J. Mater. Sci. 39, 6957 (2004).

    Article  Google Scholar 

  54. R.Q. Ye, B.Q. Han, and E.J. Lavernia, Mater. Res. Soc. Symp. Proc. 821, 313 (2004).

    Article  Google Scholar 

  55. Z.H. Lee, D.B. Witkin, E.J. Lavernia, and S.R. Nutt, Mater. Res. Soc. Symp. Proc. 791, 3 (2004).

    Google Scholar 

  56. Z. Lee, J. Lee, E.J. Lavernia, and S.R. Nutt, Mater. Res. Soc. Symp. Proc. 821, 257 (2004).

    Google Scholar 

  57. F. Zhou, Z. Lee, E.J. Lavernia, and S.R. Nutt, Mater. Res. Soc. Symp. Proc. 821, 83 (2004).

    Article  Google Scholar 

  58. Z. Lee, D.B. Witkin, E.J. Lavernia, and S.R. Nutt, Mater. Res. Soc. Symp. Proc. 740, 21 (2003).

    Google Scholar 

  59. V.L. Tellkamp, A. Melmed, and E.J. Lavernia, Metall. Mater. Trans. A 32, 2335 (2001).

    Article  Google Scholar 

  60. M. Taya, W.D. Armstrong, M. Dunn, and T. Mori, Mater Sci. Eng. A 143, 143 (1991).

    Article  Google Scholar 

  61. X.Z. Kai, Z.Q. Li, G.L. Fan, Q. Guo, Z.Q. Tan, W.L. Zhang, Y.S. Su, W.J. Lu, W.J. Moon, and D. Zhang, Scripta Mater. 68, 555 (2013).

    Article  Google Scholar 

  62. Y.S. Suh, S.P. Joshi, and K.T. Ramesh, Acta Mater. 57, 5848 (2009).

    Article  Google Scholar 

  63. N.A. Fleck, M.F. Ashby, and J.W. Hutchinson, Scripta Mater. 48, 179 (2003).

    Article  Google Scholar 

  64. D.J. Lloyd, Int. Mater. Rev. 39, 1 (1994).

    Article  Google Scholar 

  65. Z. Wang, T.K. Chen, and D.J. Lloyd, Metall. Trans. A 24, 197 (1993).

    Article  Google Scholar 

  66. H.X. Peng, Z. Fan, and J.R.G. Evans, J. Microsc-Oxford 201, 333 (2001).

    Article  MathSciNet  Google Scholar 

  67. Z.Y. Fan, Philos. Mag. A 73, 1663 (1996).

    Article  Google Scholar 

  68. Z. Zhou, H.X. Peng, Z. Fan, and D.X. Li, Mater. Sci. Tech. Ser. 16, 908 (2000).

    Article  Google Scholar 

  69. P. Zhang and F.G. Li, Rare Metal Mat. Eng. 39, 1525 (2010).

    Article  Google Scholar 

  70. T.C. Tszeng, Compos. Part B 29, 299 (1998).

    Article  Google Scholar 

  71. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nat. Mater. 12, 344 (2013).

    Article  Google Scholar 

  72. F. Cai, S.H. Zhang, J.L. Li, Z. Chen, M.X. Li, and L. Wang, Appl. Surf. Sci. 258, 1819 (2011).

    Article  Google Scholar 

  73. L.F. Smith, A.D. Krawitz, P. Clarke, S. Saimoto, N. Shi, and R.J. Arsenault, Mater. Sci. Eng. A 159, L13 (1992).

    Article  Google Scholar 

  74. S. Mukherjee, C.R. Ananth, and N. Chandra, Compos. Sci. Technol. 57, 1501 (1997).

    Article  Google Scholar 

  75. Y.G. Wei, T.P. Li, and H. Xie, Adv. Mater. Res. 33, 591 (2008).

    Article  Google Scholar 

  76. E. Carreno-Morelli, Mater. Sci. Forum 366–3, 570 (2001).

    Article  Google Scholar 

  77. Y.Q. Ning, Z.K. Yao, H.Z. Guo, Y. Tao, and Y.W. Zhang, Chin. J. Mech. Eng. 22, 925 (2009).

    Article  Google Scholar 

  78. F. Chen, X.P. Li, J.Y. Wu, Q. Shen, J.M. Schoenung, and L.M. Zhang, Scripta Mater. 68, 297 (2013).

    Article  Google Scholar 

  79. J.Y. Wu, F. Chen, Q. Shen, J.M. Schoenung, and L.M. Zhang, J. Nanomater. 2013, 1 (2013).

    Google Scholar 

  80. J.R. Song, K.K. Ma, Y. Li, L.M. Zhang, and J.M. Schoenung, Mater Sci. Eng. A 528, 3210 (2011).

    Article  Google Scholar 

  81. J.R. Song, K.K. Ma, L.M. Zhang, and J.M. Schoenung, Surf. Coat. Tech. 205, 1241 (2010).

    Article  Google Scholar 

  82. J.A. Picas, Y. Xiong, M. Punset, L. Ajdelsztajn, A. Forn, and J.M. Schoenung, Int. J. Refract. Met. Hard Mater. 27, 344 (2009).

    Article  Google Scholar 

  83. D.M. Liu, Y.H. Xiong, Y. Li, T.D. Topping, Y.Z. Zhou, C. Haines, J. Paras, D. Martin, D. Kapoor, J.M. Schoenung, and E.J. Lavernia, Metall. Mater. Trans. A 44A, 1908 (2013).

    Article  Google Scholar 

  84. Y.H. Xiong, D.M. Liu, Y. Li, B.L. Zheng, C. Haines, J. Paras, D. Martin, D. Kapoor, E.J. Lavernia, and J.M. Schoenung, Metall. Mater. Trans. A 43A, 327 (2012).

    Article  Google Scholar 

  85. D.M. Liu, Y.H. Xiong, T.D. Topping, Y.Z. Zhou, C. Haines, J. Paras, D. Martin, D. Kapoor, J.M. Schoenung, and E.J. Lavernia, Metall. Mater. Trans. A 43A, 340 (2012).

    Article  Google Scholar 

  86. J.C. Ye, L. Ajdelsztajn, and J.M. Schoenung, Metall. Mater. Trans. A 37A, 2569 (2006).

    Article  Google Scholar 

  87. J.S. Wang, A. Horsfield, P.D. Lee, and P. Brommer, Phys. Rev. B 82, 184203 (2010).

    Article  Google Scholar 

  88. A.M. Bunn, P. Schumacher, M.A. Kearns, C.B. Boothroyd, and A.L. Greer, Mater. Sci. Tech. Ser. 15, 1115 (1999).

    Article  Google Scholar 

  89. T. Qin and Z. Fan, The 3rd International Conference on Advances in Solidification Processes (Materials Science and Engineering, 2011).

  90. A. Kulpa and T. Troczynski, J. Am. Ceram. Soc. 79, 518 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support for this research. The fundamental studies on structure–property relations in trimodal materials have been funded by the Office of Naval Research (ONR) under the guidance of Dr. Larry Kabacoff (ONR N00014-12-1-0237). Support for the development of trimodal armor systems has been provided by ONR under the guidance of Rod Peterson and Bill Golumbfskie (ONR N00014-03-C-0163 and N00014-12-C-0241) as well as by the Army Research Laboratory (ARL) under the direction of Kyu Cho (ARL W911NF-08-2-0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie M. Schoenung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Ma, K., Yang, H. et al. The Microstructural Design of Trimodal Aluminum Composites. JOM 66, 898–908 (2014). https://doi.org/10.1007/s11837-014-0906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0906-2

Keywords

Navigation