Skip to main content
Log in

High-Entropy Metallic Glasses

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The high-entropy alloys are defined as solid-solution alloys containing five or more than five principal elements in equal or near-equal atomic percent. The concept of high mixing entropy introduces a new way for developing advanced metallic materials with unique physical and mechanical properties that cannot be achieved by the conventional microalloying approach based on only a single base element. The metallic glass (MG) is the metallic alloy rapidly quenched from the liquid state, and at room temperature it still shows an amorphous liquid-like structure. Bulk MGs represent a particular class of amorphous alloys usually with three or more than three components but based on a single principal element such as Zr, Cu, Ce, and Fe. These materials are very attractive for applications because of their excellent mechanical properties such as ultrahigh (near theoretical) strength, wear resistance, and hardness, and physical properties such as soft magnetic properties. In this article, we review the formation and properties of a series of high-mixing-entropy bulk MGs based on multiple major elements. It is found that the strategy and route for development of the high-entropy alloys can be applied to the development of the MGs with excellent glass-forming ability. The high-mixing-entropy bulk MGs are then loosely defined as metallic glassy alloys containing five or more than five elements in equal or near-equal atomic percent, which have relatively high mixing entropy compared with the conventional MGs based on a single principal element. The formation mechanism, especially the role of the mixing entropy in the formation of the high-entropy MGs, is discussed. The unique physical, mechanical, chemical, and biomedical properties of the high-entropy MGs in comparison with the conventional metallic alloys are introduced. We show that the high-mixing-entropy MGs, along the formation idea and strategy of the high-entropy alloys and based on multiple major elements, might provide a novel approach in search for new MG-forming systems with significances in scientific studies and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Clement, R.H. Willens, and P. Duwez, Nature 187, 869 (1960).

    Article  Google Scholar 

  2. H.S. Chen, Rep. Prog. Phys. 43, 353 (1980).

    Article  Google Scholar 

  3. W.H. Wang, C. Dong, and C.H. Shock, Mater. Sci. Eng. R 44, 45 (2004).

    Article  Google Scholar 

  4. W.L. Johnson, Prog. Mater. Sci. 30, 81 (2007).

    Article  Google Scholar 

  5. W.H. Wang, Adv. Mater. 21, 4524 (2009).

    Article  Google Scholar 

  6. H.A. Daveis, Amorphous Metallic Alloys, ed. F.E. Luborsky (London, UK: Butterworths, 1983), p. 8.

    Chapter  Google Scholar 

  7. A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  8. A. Inoue, Mater. Trans. JIM 36, 866 (1995).

    Article  Google Scholar 

  9. Y. Li, S.J. Poon, J. Xu, D.H. Kim, and J.F. Loeffler, MRS Bull. 32, 624 (2007).

    Article  Google Scholar 

  10. W.H. Wang, Prog. Mater. Sci. 52, 540 (2007).

    Article  Google Scholar 

  11. P. Yu, H.Y. Bai, and W.H. Wang, J. Mater. Res. 21, 1674 (2006).

    Article  Google Scholar 

  12. A.L. Greer, Nature 366, 303 (1993).

    Article  Google Scholar 

  13. Q. Luo and W.H. Wang, J. Non-Cryst. Solids 355, 759 (2009).

    Article  Google Scholar 

  14. A. Inoue, N. Nishiyama, and H. Kimura, Mater. Trans. JIM 38, 179 (1997).

    Article  Google Scholar 

  15. S. Li, R.J. Wang, and W.H. Wang, J. Non-Cryst. Solids 354, 1080 (2008).

    Article  Google Scholar 

  16. F.Q. Guo, S.J. Poon, and G.J. Shiflet, Scr. Mater. 43, 1089 (2000).

    Article  Google Scholar 

  17. M.B. Tang, D.Q. Zhao, and W.H. Wang, Chin. Phys. Lett. 21, 901 (2004).

    Article  Google Scholar 

  18. W.H. Wang, J.J. Lewandowski, and A.L. Greer, J. Mater. Res. 20, 2307 (2005).

    Article  Google Scholar 

  19. B. Zberg, P.J. Uggowitzer, and J.F. Löffler, Nature Mater. 8, 887 (2009).

    Article  Google Scholar 

  20. B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, and A.L. Greer, Phys. Rev. Lett. 94, 205502 (2005).

    Article  Google Scholar 

  21. K. Zhao, J.F. Li, D.Q. Zhao, and W.H. Wang, Scr. Mater. 61, 1091 (2009).

    Article  Google Scholar 

  22. Z.P. Lu, C.T. Liu, J.R. Thompson, and W.D. Porter, Phys. Rev. Lett. 92, 245503 (2004).

    Article  Google Scholar 

  23. Y.H. Liu, G. Wang, R.J. Wang, M.X. Pan, and W.H. Wang, Science 315, 1385 (2007).

    Article  Google Scholar 

  24. W.H. Wang, M.X. Pan, and H.Y. Bai, J. Phys. Condens. Mat. 16, 3719 (2004).

    Article  Google Scholar 

  25. D. Meng, J. Yi, D.Q. Zhao, D.W. Ding, H.Y. Bai, and W.H. Wang, J. Non-Cryst. Solids 357, 1787 (2011).

    Article  Google Scholar 

  26. E.S. Park and D.H. Kim, J. Mater. Res. 19, 685 (2004).

    Article  Google Scholar 

  27. Z.F. Zhao, D.Q. Zhao, and W.H. Wang, Appl. Phys. Lett. 82, 4699 (2003).

    Article  Google Scholar 

  28. J. Schroers and W.L. Johnson, Appl. Phys. Lett. 84, 3666 (2004).

    Article  Google Scholar 

  29. J. Das, M.B. Tang, K.B. Kim, W.H. Wang, and J. Eckert, Phys. Rev. Lett. 94, 205501 (2005).

    Article  Google Scholar 

  30. V. Ponnambalam, S.J. Poon, and G.J. Shiflet, J. Mater. Res. 19, 1320 (2004).

    Article  Google Scholar 

  31. K.B. Kim, P.J. Warren, and B. Cantor, J. Non-Cryst. Solids 317, 17 (2003).

    Article  Google Scholar 

  32. J.F. Li, D.Q. Zhao, M.L. Zhang, and W.H. Wang, Appl. Phys. Lett. 93, 171907 (2008).

    Article  Google Scholar 

  33. X.F. Liu, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang, Appl. Phys. Lett. 91, 041901 (2007).

    Article  Google Scholar 

  34. J.W. Yeh, S.K. Chen, and S.J. Lin, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  35. B. Cantor, I.T.H. Chang, and P. Knight, Mater. Sci. Eng. A 375–377, 213 (2004).

    Article  Google Scholar 

  36. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  37. J.W. Yeh, Ann. Chim. Sci. Mater. 31, 633 (2006).

    Article  Google Scholar 

  38. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  39. Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).

    Article  Google Scholar 

  40. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  41. F. Tian, L. Delczeg, N. Chen, L.K. Varga, J. Shen, and L. Vitos, Phys. Rev. B 88, 085128 (2013).

    Article  Google Scholar 

  42. M.C. Gao and D.E. Alman, Entropy 15, 4504 (2013).

    Article  Google Scholar 

  43. M. Widom, W.P. Huhn, S. Maiti, and W. Steurer, Metall. Mater. Trans. A 45, 196 (2014).

    Article  Google Scholar 

  44. N.-P. Ong and R. Bhatt, More is Different (Princeton, NJ: Princeton University Press, 2001).

    Google Scholar 

  45. K. Zhao, H.Y. Bai, D.Q. Zhao, and W.H. Wang, Appl. Phys. Lett. 98, 141913 (2011).

    Article  Google Scholar 

  46. X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, and H.Y. Bai, J. Non-Cryst. Solids 357, 3557 (2011).

    Article  Google Scholar 

  47. H.F. Li, X.H. Xie, K. Zhao, Y.B. Wang, Y.F. Zheng, W.H. Wang, and L. Qin, Acta Biomater. 9, 8561 (2013).

    Article  Google Scholar 

  48. A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, and A. Inoue, Intermetallics 19, 1546 (2011).

    Article  Google Scholar 

  49. J. Wang, Z. Zheng, J. Xu, and Y. Wang, J. Magn. Magn. Mater. 355, 58 (2014).

    Article  Google Scholar 

  50. H.Y. Ding and K.F. Yao, J. Non-Cryst. Solids 364, 9 (2013).

    Article  Google Scholar 

  51. S. Guo, Q. Hu, C. Ng, and C.T. Liu, Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  52. L.Q. Ma, L.M. Wang, T. Zhang, and A. Inoue, Mater. Trans. 43, 277 (2002).

    Article  Google Scholar 

  53. R.A. Swalin, Thermodynamics of Solids (New York: Wiley, 1991).

    Google Scholar 

  54. W.H. Wang, J. Appl. Phys. 99, 093506 (2006).

    Article  Google Scholar 

  55. P.S. Steif, F. Spaepen, and J.W. Hutchinson, Acta Metall. 30, 447 (1982).

    Article  Google Scholar 

  56. J.S. Langer, Phys. Rev. E 70, 041502 (2004).

    Article  Google Scholar 

  57. S.T. Liu, W. Jiao, B.A. Sun, and W.H. Wang, J. Non-Cryst. Solids 376, 76 (2013).

    Article  Google Scholar 

  58. Z. Wang, P. Wen, L.S. Huo, H.Y. Bai, and W.H. Wang, Appl. Phys. Lett. 101, 120906 (2012).

    Google Scholar 

  59. S.T. Liu, Z. Wang, H.L. Peng, H.B. Yu, and W.H. Wang, Scr. Mater. 67, 9 (2012).

    Article  Google Scholar 

  60. W. Jiao, P. Wen, H.L. Peng, H.Y. Bai, B.A. Sun, and W.H. Wang, Appl. Phys. Lett. 102, 101903 (2013).

    Article  Google Scholar 

  61. G. Kumar, H.X. Tang, and J. Schroers, Nature 868, 457 (2009).

    Google Scholar 

  62. N. March and M. Tosi, Polymers, Liquid Crystals and Low-Dimensional Solids (New York: Plenum, 1984), p. 3.

    Google Scholar 

  63. W.H. Wang, Prog. Mater Sci. 57, 487 (2012).

    Article  Google Scholar 

  64. Y.H. Liu, C.T. Liu, W.H. Wang, A. Inoue, and M.W. Chen, Phys. Rev. Lett. 103, 065504 (2009).

    Article  Google Scholar 

  65. B. Yang, J. Wadsworth, and T.G. Nieh, Appl. Phys. Lett. 90, 061911 (2007).

    Article  Google Scholar 

  66. W.H. Wang, J. Appl. Phys. 110, 053521 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The experimental aid and discussions of K. Zhao, X.Q. Gao, H.Y. Bai, D.Q. Zhao, D.W. Ding, M.X. Pan, H.F. Li, and Y. F. Zheng are greatly appreciated. Financial support from NSF of China (51271195) and MOST973 of China (2007CB613904 and 2010CB731603) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.H. High-Entropy Metallic Glasses. JOM 66, 2067–2077 (2014). https://doi.org/10.1007/s11837-014-1002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1002-3

Keywords

Navigation