Skip to main content
Log in

Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The geometrical optimization of aligned hard-soft permanent-magnet nanocomposites is investigated by model calculations. Considered criteria are the shapes of the soft and c-axis-aligned hard phases, the packing fraction of the soft phase, and magnetostatic interactions. Taking into account that the energy product is enhanced via the volume fraction of the soft phase, subject to maintaining coercivity, we find that the best structures are soft-magnetic cubes as well as long rods with a square cross section. Comparing embedded soft cubes with embedded soft spheres of the same size, our nucleation-field analysis shows that the volume fraction of the soft phase is enhanced by 91%, with a coercivity reduction of only 25%. Magnetostatic interactions often but not always deteriorate the permanent-magnet performance, as exemplified by the example of MnBi:FeCo bilayers and multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Herbst, Rev. Mod. Phys. 63, 819 (1991).

    Article  Google Scholar 

  2. K. Kumar, J. Appl. Phys. 63, R13 (1988).

    Article  Google Scholar 

  3. R. Skomski and J.M.D. Coey, Permanent Magnetis (Bristol: Institute of Physics, 1999).

    Google Scholar 

  4. D. Weller and T. McDaniel, Advanced Magnetic Nanostructures, ed. D.J. Sellmyer and R. Skomski (Berlin, Germany: Springer, 2006), pp. 295–32.

  5. R.L. Comstock, Introduction to Magnetism and Magnetic Recording (New York: Wiley, 1999).

    Google Scholar 

  6. A. Aharoni, Rev. Mod. Phys. 34, 227 (1962).

    Article  Google Scholar 

  7. D. Givord and M.F. Rossignol, Rare-Earth Iron Permanent Magnets, ed. J.M. D. Coe (Oxford, U.K.: University Press, 1996), pp. 218–285.

  8. J.M.D. Coey, IEEE Trans. Magn. 49, 4671 (2011).

    Article  Google Scholar 

  9. L.H. Lewis, A. Mubarok, E. Poirier, N. Bordeaux, P. Manchanda, A. Kashyap, R. Skomski, J. Goldstein, F.E. Pinkerton, R.K. Mishra, R.C. Kubic Jr, and K. Barmak, J. Phys. Condens. Matter 26, 064213 (2014).

    Article  Google Scholar 

  10. P. Kumar, A. Kashyap, B. Balamurugan, J.E. Shield, D.J. Sellmyer, and R. Skomski, J. Phys. Condens. Matter 26, 064209 (2014).

    Article  Google Scholar 

  11. R. Skomski, P. Manchanda, P. Kumar, B. Balamurugan, A. Kashyap, and D.J. Sellmyer, IEEE Trans. Magn. 49, 3215 (2013).

    Article  Google Scholar 

  12. E.F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).

    Article  Google Scholar 

  13. R. Skomski and J.M.D. Coey, Phys. Rev. B 48, 15812 (1993).

    Article  Google Scholar 

  14. E.E. Fullerton, S.J. Jiang, and S.D. Bader, J. Magn. Magn. Mater. 200, 392 (1999).

    Article  Google Scholar 

  15. N. Jones, Nature 472, 22 (2011).

    Article  Google Scholar 

  16. P. Liu, C.P. Luo, Y. Liu, and D.J. Sellmyer, Appl. Phys. Lett. 72, 483 (1998).

    Article  Google Scholar 

  17. D. Roy and P.S. Anil Kumar, J. Appl. Phys. 106, 073902 (2009).

    Article  Google Scholar 

  18. E. Goto, N. Hayashi, T. Miyashita, and K. Nakagawa, J. Appl. Phys. 36, 2951 (1965).

    Article  Google Scholar 

  19. H. Kronmüller, Phys. Status Solidi B 144, 385 (1987).

    Article  Google Scholar 

  20. S. Nieber and H. Kronmüller, Phys. Status Solidi B 153, 367 (1989).

    Article  Google Scholar 

  21. R. Skomski, Phys. Status Solidi B 174, K77 (1992).

    Article  Google Scholar 

  22. R. Skomski and J.M.D. Coey, IEEE Trans. Magn. 30, 607 (1994).

    Article  Google Scholar 

  23. R. Skomski, J. Appl. Phys. 83, 6503 (1998).

    Article  Google Scholar 

  24. R. Skomski, J. Phys. Condens. Matter 15, R841 (2003).

    Article  Google Scholar 

  25. T. Schrefl and J. Fidler, J. Appl. Phys. 83, 6262 (1998).

    Article  Google Scholar 

  26. A. Szlaferek, Phys. Status Solidi B 241, 1312 (2004).

    Article  Google Scholar 

  27. J.S. Jiang and S.D. Bader, J. Phys. Condens. Matter 26, 064214 (2014).

    Article  Google Scholar 

  28. J.P. Liu, R. Skomski, Y. Liu, and D.J. Sellmyer, J. Appl. Phys. 87, 6740 (2000).

    Article  Google Scholar 

  29. J. Lyubina, K.-H. Müller, M. Wolf, and U. Hannemann, J. Magn. Magn. Mater. 322, 2948 (2010).

    Article  Google Scholar 

  30. W.F. Brown, Micromagnetics (New York: Wiley, 1963).

    Google Scholar 

  31. D.J. Craik and E.D. Isaak, Proc. Phys. Soc. 76, 160 (1960).

    Article  Google Scholar 

  32. G.C. Hadjipanayis and W. Gong, J. Appl. Phys. 64, 5559 (1988).

    Article  Google Scholar 

  33. K. Khlopkov, O. Gutfleisch, R. Schäfer, D. Hinz, K.-H. Müller, and U.L. Schultz, J. Magn. Magn. Mater. 272, E1937 (2004).

    Article  Google Scholar 

  34. R. Skomski, J.-P. Liu, and D.J. Sellmyer, Phys. Rev. B 60, 7359 (1999).

    Article  Google Scholar 

  35. F. Preisach, Z. Phys. 94, 277 (1935).

    Article  Google Scholar 

  36. R. Skomski and D.J. Sellmyer, J. Appl. Phys. 89, 7263 (2001).

    Article  Google Scholar 

  37. J.S. Smart, Effective Field Theories of Magnetism (Philadelphia, PA: Saunders, 1966).

    Google Scholar 

  38. G. Herzer, J. Magn. Magn. Mater. 112, 258 (1992).

    Article  Google Scholar 

  39. R. Coehoorn, D.B. de Mooij, J.P.W.B. Duchateau, and K.H.J. Buschow, J. Phys. 49(C-8), 669 (1988).

  40. J. Schneider, D. Eckert, K.-H. Müller, A. Handstein, H. Mühlbach, H. Sassik, and H.R. Kirchmayr, Mater. Lett. 9, 201 (1990).

    Article  Google Scholar 

  41. A. Manaf, R.A. Buckley, and H.A. Davies, J. Magn. Magn. Mater. 128, 302 (1993).

    Article  Google Scholar 

  42. R. Skomski, J. Magn. Magn. Mater. 157, 713 (1996).

    Article  Google Scholar 

  43. P. Fulde, Electron Correlations in Molecules and Solids (Berlin, Germany: Springer, 1991).

    Book  Google Scholar 

  44. J.M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford, U.K.: Oxford University Press, 1992).

    Google Scholar 

Download references

Acknowledgments

The research is supported primarily by PNNL ARPA-E (to J.C., I.T., P.M., and R.S.) and partially by NSF MRSEC DMR-0820521 and ARO W911NF-10-2-0099 (to R.S. and P.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Skomski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skomski, R., Manchanda, P., Takeuchi, I. et al. Geometry Dependence of Magnetization Reversal in Nanocomposite Alloys. JOM 66, 1144–1150 (2014). https://doi.org/10.1007/s11837-014-1005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1005-0

Keywords

Navigation