Skip to main content
Log in

Low-Density Steels: Complex Metallurgy for Automotive Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The current aim in the development of third-generation steels for lightweighting automotive applications is to increase strength keeping at least the same formability as current steel concepts. In this philosophy, an optimal concept would be one that brings, in addition, a lower density. For this purpose, low-density steels have been designed with important aluminum additions obtaining density reductions of 8–10% or higher in comparison with low-carbon steels. At the levels required for lightweighting, aluminum introduces complex phenomena in steels. Here, some of the effects of aluminum in phase stability, CALPHAD-type modeling, and microstructure development are described, the latter in relation with mechanical properties. Finally, the potential of two families of lightweight steels for automotive applications is assessed by comparison with a steel currently present in automotive structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.L. Case and K.R. Van Horn, Aluminum in Iron and Steel (New York: Wiley, 1953), p. 4.

    Google Scholar 

  2. R.A. Hadfield, U.S. patent 422,403 (1897).

  3. R.A. Hadfield, Trans. Am. Inst. Min. Eng. 19, 1041 (1891).

    Google Scholar 

  4. F.R. Morral, J. Iron Steel Inst. 130, 419 (1934).

    Google Scholar 

  5. L.J. Huetter and H.H. Stadelmeier, Acta Metall. 6, 367 (1958).

    Article  Google Scholar 

  6. L.S. Palatnik, I.A. Tananko, and Y.G. Bobro, Sov. Phys. Crystallogr. 9, 163 (1964).

    Google Scholar 

  7. R. Oshima and C.M. Wayman, Metall. Trans. 3, 2163 (1972).

    Article  Google Scholar 

  8. K. Löhberg and W. Schmidt, Arch. Eisenhüttenwes. 11, 607 (1938).

    Google Scholar 

  9. K. Nishida, Tech. Rep. Hokaido Univ. 48, 71 (1968).

    Google Scholar 

  10. K. Ishida, H. Ohtani, N. Satoh, R. Kainuma, and T. Nishizawa, ISIJ Int. 30, 680 (1990).

    Article  Google Scholar 

  11. M. Palm and G. Inden, Intermetallics 3, 443 (1995).

    Article  Google Scholar 

  12. K. Sato, K. Tagawa, and Y. Inoue, Mater. Sci. Eng. A 111, 45 (1989).

    Article  Google Scholar 

  13. H. Ishii, K. Ohkubo, S. Miura, and T. Mohri, Mater. Trans. 44, 1679 (2003).

    Article  Google Scholar 

  14. S.-T. Chiou, W.-C. Cheng, and W.-S. Lee, Mater. Sci. Eng. A 392, 156 (2005).

    Article  Google Scholar 

  15. G.R. Smolik and S.K. Banerji, eds., Alternate Alloying for Environmental Resistance (Warrendale, PA: The Metallurgical Society Inc.-AIME, 1987).

    Google Scholar 

  16. A. Inoue, T. Minemura, A. Kitamura, and T. Masumoto, Metall. Trans. A 12A, 1041 (1981).

    Article  Google Scholar 

  17. K.H. Hwang, C.M. Wan, and J.G. Byrne, Mater. Sci. Eng. A 132, 161 (1991).

    Article  Google Scholar 

  18. G. Frommeyer, E.J. Drewes, and B. Engl, Rev. Metall. 10, 1245 (2000).

    Article  Google Scholar 

  19. B.L. Lindahl and M. Selleby, CALPHAD 43, 86 (2013).

    Article  Google Scholar 

  20. Thermo-Calc Software TCFE7 Steels/Fe-alloys database version 7 (http://www.thermocalc.com).

  21. K. Sato, K. Tagawa, and Y. Inoue, Scr. Metall. 22, 899 (1988).

    Article  Google Scholar 

  22. W.K. Choo, J.H. Kim, and J.C. Yoon, Acta Mater. 45, 4877 (1997).

    Article  Google Scholar 

  23. K.C. Hari Kumar and V. Raghavan, J. Phase Equilib. 12, 275 (1991).

    Article  Google Scholar 

  24. M. Hillert, J. Alloys Compd. 320, 161 (2001).

    Article  Google Scholar 

  25. H. Ohtani, M. Yamano, and M. Hasebe, ISIJ Int. 44, 1738 (2004).

    Article  Google Scholar 

  26. D. Connétable, J. Lacaze, P. Maugis, and B. Sundman, CALPHAD 32, 361 (2008).

    Article  Google Scholar 

  27. D. Connétable and P. Maugis, Intermetallics 16, 345 (2008).

    Article  Google Scholar 

  28. B. Sundman, I. Ohnuma, N. Dupin, U.R. Kattner, and S.G. Fries, Acta Mater. 57, 2896 (2009).

    Article  Google Scholar 

  29. Precipitation in High Manganese Steels, Project financed by the Research Fund for Coal and Steel of the European Union (Grant Agreement no. RFSR-CT-2010-00018).

  30. K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee, J. Alloys Compd. 505, 217 (2010).

    Article  Google Scholar 

  31. D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, CALPHAD 34, 279 (2010).

    Article  Google Scholar 

  32. D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, CALPHAD 35, 479 (2011).

    Article  Google Scholar 

  33. R. Umino, X.J. Liu, Y. Sutou, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, J. Phase Equilib. Diffus. 27, 54 (2006).

    Article  Google Scholar 

  34. C. Castan, F. Montheillet, and A. Perlade, Scr. Mater. 68, 360 (2013).

    Article  Google Scholar 

  35. I. Zuazo (Ph.D. dissertation, Institut Polytechnique de Grenoble, 2009).

  36. V.G. Rivlin, Int. Metall. Rev. 28, 309 (1983).

    Google Scholar 

  37. I. Kalashnikov, O. Acselrad, A. Shalkevich, and L.C. Pereira, J. Mater. Eng. Perform. 9, 597 (2000).

    Article  Google Scholar 

  38. A. Etienne, V. Massardier-Jourdan, S. Cazottes, X. Garat, M. Soler, I. Zuazo, and X. Kleber, Metall. Mater. Trans. A 45, 324 (2014).

    Article  Google Scholar 

  39. O. Bouaziz, H. Zurob, B. Chehab, J.D. Embury, S. Allain, and M. Huang, Mater. Sci. Technol. 27, 707 (2011).

    Article  Google Scholar 

  40. S.K. Banerji, Metall. Prog. 113, 59 (1978).

    Google Scholar 

  41. O. Bouaziz, D. Barbier, J.D. Embury, and G. Badinier, Philos. Mag. 93, 247 (2013).

    Article  Google Scholar 

  42. J.O. Hallquist, LS-DYNA Theory Manual (Livermore, CA: Livermore Software Technology Corporation, 2006).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank some colleagues from ArcelorMittal Maizières that helped in this investigation: first of all, X. Garat for performing several treatments and for discussion. L. Chapuis and P. Barges for performing the electron backscattered diffraction (EBSD) and TEM characterization, respectively. K. Zhu for useful discussion on the EBSD analysis. T. Iung, Group Leader, is also acknowledged for constant support. The work done in the section, “Incorporating Aluminum in Fe-C Thermodynamic Calculations” was done in the frame of the project “Precipitation in High Manganese Steels” financed by the Research Fund for Coal and Steel of the European Union (Grant Agreement no.RFSR-CT-2010-00018). Finally, J.L. Thirion, General Manager of ArcelorMittal Global R&D, is acknowledged for the permission to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zuazo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuazo, I., Hallstedt, B., Lindahl, B. et al. Low-Density Steels: Complex Metallurgy for Automotive Applications. JOM 66, 1747–1758 (2014). https://doi.org/10.1007/s11837-014-1084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1084-y

Keywords

Navigation