Skip to main content
Log in

Control of Transverse Corner Cracks on Low-Carbon Steel Slabs

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, the formation mechanism of transverse corner cracks on a low-carbon steel continuous-casting slab was investigated. The factors influencing the transverse corner cracks were discussed. The hot ductility of the low-carbon steel within 600°C and 1250°C was detected using a thermal simulator Gleeble 1500 (Dynamic Systems, Inc., Poestenkill, NY) to determine the embrittling temperature range of the steel. The temperature of the slab varied with time, especially at the slab corner, and it was calculated and discussed. It was found that transverse corner cracks were generated on the ferrite films along grain boundaries, and there was little decarburization layer near the cracks. According to the calculated temperature at slab corner, the cooling water flow rate and cooling strategy were optimized by adjusting the cooling water flow rate at each spray cooling zone to avoid the embrittling temperature range at the bending and straightening segments of the caster. As a result, the transverse corner cracks were successfully weakened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. O.B. Isaev, V.V. Kislitsa, and A.V. Fedosov, Metallurgist 55, 720 (2012).

    Article  Google Scholar 

  2. H. Yasunaka, K. Nakayama, K. Ebina, T. Saito, M. Kimura, and H. Matuda, Tetsu-to-Hagané 81, 894 (1995).

    Google Scholar 

  3. B. Mintz and D.N. Crowther, Int. Mater. Rev. 55, 168 (2010).

    Article  Google Scholar 

  4. B. Mintz, S. Yue, and J.J. Jonas, Int. Mater. Rev. 36, 187 (1991).

    Article  Google Scholar 

  5. B. Mintz, J.R. Wilcox, and D.N. Crowther, Mater. Sci. Technol. Ser. 2, 589 (1986).

    Article  Google Scholar 

  6. H. Luo, L.P. Karjalainen, D.A. Porter, H.M. Liimatainen, and Y. Zhang, ISIJ Int. 42, 273 (2002).

    Article  Google Scholar 

  7. K.M. Banks, A. Tuling, and B. Mintz, Mater. Sci. Technol. Ser. 27, 1309 (2011).

    Article  Google Scholar 

  8. F. Zarandi and S. Yue, ISIJ Int. 46, 591 (2006).

    Article  Google Scholar 

  9. B.H. Chen and H. Yu, Int. J. Min. Metall. Mater. 19, 525 (2012).

    Article  MATH  Google Scholar 

  10. S.H. Song, Z.X. Yuan, J. Jia, A.M. Guo, and D.D. Shen, Metall. Mater. Trans. A 34, 1611 (2003).

    Article  Google Scholar 

  11. Y. Gao and K. Sorimachi, ISIJ Int. 35, 914 (1995).

    Article  Google Scholar 

  12. K.C. Cho, D.J. Mun, J.Y. Kim, J.K. Park, J.S. Lee, and Y.M. Koo, Metall. Mater. Trans. A 41, 1421 (2010).

    Article  Google Scholar 

  13. B. Mintz, ISIJ Int. 39, 833 (1999).

    Article  Google Scholar 

  14. T. Nozaki, J.I. Matsuno, K. Murata, H. Ooi, and M. Kodama, Trans. Iron Steel Inst. Jpn. 18, 330 (1978).

    Google Scholar 

  15. T.A. Kop, Y.V. Leeuwen, J. Sietsma, and S.V.D. Zwaag, ISIJ Int. 40, 713 (2000).

    Article  Google Scholar 

  16. P. Zhao, X. Wang, S. Wu, M. Liu, W. Wang, B. Gong, W. Zhu, J. Ye, and Y. Wang, Iron Steel 31, 21 (1996).

    Google Scholar 

  17. B. Su, Z. Han, Y. Zhao, B. Shen, L. Zhang, and B. Liu, Acta Metall. Sin. 47, 1388 (2011).

    Google Scholar 

  18. X. Chun, Q. Sun, and X. Chen, Mater. Des. 28, 2523 (2007).

    Article  Google Scholar 

  19. D.N. Crowther and B. Mintz, Mater. Sci. Technol. Ser. 2, 671 (1986).

    Article  Google Scholar 

  20. M. Long and D. Chen, Steel Res. Int. 82, 847 (2011).

    Article  Google Scholar 

  21. J. Zhang, D. Chen, S. Wang, and M. Long, Steel Res. Int. 82, 213 (2011).

    Article  Google Scholar 

  22. J.M. Cabrera-Marrero, V.O. Galindo, R.D. Morales, and A. Vez, ISIJ Int. 38, 812 (1998).

    Article  Google Scholar 

  23. J. Sun, Heat Transfer Analysis of Continuous Casting and Rolling Process (Beijing: Metallurgical Industry Press, 2010), pp. 43–47.

    Google Scholar 

  24. G. Kaestle, H. Jacobi, and K. Wuennenberg, 65th Steelmaking Conference Proceedings, Vol. 41 (Pittsburgh: ISS, 1982), pp. 251–261.

    Google Scholar 

  25. J. Pietryka, B. Lacoste, P. Benoit, and P. Pithois, AGARD Conference Proceedings (London: Metals Society, 1977), pp. 89–99.

    Google Scholar 

  26. D. Mazumdar, ISIJ Int. 29, 524 (1989).

    Article  Google Scholar 

  27. B. Pawowski, Arch. Metall. Mater. 57, 957 (2012).

    Google Scholar 

  28. Y.J. Lu, Q. Wang, Y.G. Li, S.P. He, Y.M. He, S.S. Pan, J.G. Zhang, and B. Hu, Ironmaker Steelmaker 38, 561 (2011).

    Article  Google Scholar 

  29. X. Wang, W. Wang, X. Liu, H. Fei, L. Zhang, and J. Ye, Iron Steel 33, 22 (1998).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grants 51274034, 51334002, and U1360201), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, X., Li, S. et al. Control of Transverse Corner Cracks on Low-Carbon Steel Slabs. JOM 66, 1711–1720 (2014). https://doi.org/10.1007/s11837-014-1112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1112-y

Keywords

Navigation