Skip to main content

Advertisement

Log in

“2sDR”: Process Development of a Sustainable Way to Recycle Steel Mill Dusts in the 21st Century

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Significant amounts of electric arc furnace dust originating from steel production are recycled every year by the Waelz process, despite the fact that this type of process has several disadvantages. One alternative method would be the recovery of very high-quality ZnO as well as iron and even chromium in the two-step dust recycling process, which was invented to treat special waste for the recovery of heavy metal-containing residues. The big advantage of that process is that various types of residues, especially dusts, can be treated in an oxidizing first step for cleaning, with a subsequent reducing step for the metal recovery. After the treatment, three different fractions—dust, slag, and an iron alloy, can be used without any limitations. This study focuses on the development of the process along with some thermodynamic considerations. Moreover, a final overview of mass balances of an experiment performed in a 100-kg top blowing rotary converter with further developments is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.-G. Guézennec, J.-C. Huber, F. Patisson, P. Sessiecq, J.-P. Birat, and D. Ablitzer, Powder Technol. 157, 2 (2005).

    Article  Google Scholar 

  2. G. Ye, J. White, and L.-Y. Wei, in Global Symposium on Recycling Waste Treatment and Clean Technology, REWAS’99, ed. I. Gaballah, J. Hager, and R. Solozabel (Warrendale, PA: TMS, 1999), pp. 1503–1510.

  3. A. Zunkel, in Third International Symposium, Recycling of Metals and Engineered Materials, eds. P.B. Queneau and R.D. Peterson (Warrendale, PA: TMS, 1995), pp. 579–587.

  4. J. Rütten, in 3. Seminar Networking Between Zinc and Steel, ed. J. Harre (GDMB, Clausthal-Zellerfeld, 2011), pp. 77–90.

  5. S.R. Badger and W.K. Kneller, in 55th Electric Furnace Conference, ed. Iron & Steel Society (Warrendale, PA: Iron & Steel Society, 1998), pp. 95–97.

  6. R. Remus, S. Roudier, M.A. Aguado-Monsonet, and L.D. Sancho, Integrated Pollution Prevention and Control (Luxembourg: Publication Office, 2001).

    Google Scholar 

  7. Worldsteel Association, Steel Statistical Yearbook 2013 (Brussels, Belgium: Worldsteel Committee on Economic Studies, 2013), https://www.worldsteel.org/dms/internetDocumentList/statistics-archive/yearbook-archive/Steel-Statistical-Yearbook-2013/document/Steel-Statistical-Yearbook-2012.pdf

  8. P.A. Kozlov, The Waelz Process 2003 (Moscow: Ore and Metals Publishing House, 2003).

    Google Scholar 

  9. J.R. Berlow and J. Keenan, U.S. EPA: Best Demonstrated Available Technology (BDAT) (Washington, DC: U.S. Environmental Protection Agency, 1988).

  10. H. Bartusch, A.M. Fernández Alcalde, and M. Fröhling, Erhöhung der Energie- und Ressourceneffizienz und Reduzierung der Treibhausgasemissionen in der Eisen-, Stahl- und Zinkindustrie (ERESTRE) (Karlsruhe, Germany: KIT Scientific Publishing, 2013).

  11. T. Sofilić, A. Rastovčan-Mioć, Š. Cerjan-Stefanović, V. Novosel-Radović, and M. Jenko, J. Hazard. Mater. 109, 59 (2004).

    Article  Google Scholar 

  12. J.G.M.D.S. Machado, F.A. Brehm, C.A.M. Moraes, C.A. dos Santos, and A.C.F. Vilela, Mater. Res. 1, 41 (2006).

  13. J.G. Machado, F.A. Brehm, C.A. Moraes, C.A. dos Santos, A.C. Vilela, and J. Cunha, J. Hazard. Mater. 136, 953 (2006).

    Article  Google Scholar 

  14. P.J. Nolasco-Sobrinho, D.C.R. Espinosa, and J.A.S. Tenório, Ironmaker Steelmaker 30, 11 (2003).

    Article  Google Scholar 

  15. M.C. Mantovani, C. Takano, and P.M. Büchler, Ironmaker Steelmaker 31, 325 (2004).

    Article  Google Scholar 

  16. B. Garcia-Egocheaga and N. De Goicoecha y Gandiaga, in Global Symposium on Recycling Waste Treatment and Clean Technology, REWAS’99, ed. I. Gaballah, J. Hager, and R. Solozabel (Warrendale, PA: TMS, 1999), pp. 1511–1520.

  17. A.M. Hagni, R.D. Hagni, and C. Demars, JOM 42, 28 (1991).

    Article  Google Scholar 

  18. A. Ruh and T. Krause, in 3 Seminar Networking between Zinc and Steel, ed. J. Harre (GDMB, Clausthal-Zellerfeld, 2011), pp. 35–46.

  19. A. Stefanova and J. Aromaa, Alkaline Leaching of Iron and Steelmaking Dust (Helsinki: Aalto University, 2012).

    Google Scholar 

  20. S. Steinlechner and J. Antrekowitsch, in 3 Seminar Networking Between Zinc and Steel, ed. J. Harre (Clausthal-Zellerfeld, Germany: GDMB, 2011), pp. 47–56.

  21. A. Fleichhanderl and U. Gennari, Verfahren zum Verwerten von Schlacke, AT 412 283 B, 2003.

  22. G.G. Richards and J.K. Brimacombe, Metall. Trans. B 16, 529 (1985).

    Article  Google Scholar 

  23. G.G. Richards, J.K. Brimacombe, and G.W. Toop, Metall. Trans. B 16, 513 (1985).

    Article  Google Scholar 

  24. K. Koch and D. Janke, Schlacken in der Metallurgie (Düsseldorf: Stahleisen, 1984).

    Google Scholar 

  25. C. Pichler and J. Antrekowitsch, in WASTES, ed. CVR (Guimaraes, Portugal: CVR, 2013), pp. 329–335.

  26. M.J. Antal and M. Grønli, Ind. Eng. Chem. Res. 42, 1619 (2003).

    Article  Google Scholar 

  27. J. Lehmann and S. Joseph, Biochar for Environmental Management (Sterling, VA: Earthscan, 2009).

    Google Scholar 

  28. D.L. Klass, Biomass for Renewable Energy, Fuels, and Chemicals (San Diego: Academic Press, 1998).

    Google Scholar 

  29. I. Agirre, T. Griessacher, G. Rösler, and J. Antrekowitsch, Fuel Process. Technol. 106, 114 (2013).

    Article  Google Scholar 

  30. G. Rösler and J. Antrekowitsch, in The Annual World Conference on Carbon, ed. A. Castro (Rio de Janeiro, Brazil: Brazilian Carbon Association, 2013), pp. 12–13.

  31. C. Wegst and M. Wegst, Stahlschlüssel-Taschenbuch (Marbach: Verlag Stahlschlüssel Wegst, 2010).

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the Austrian Federal Ministry of Science, Research and Economy. Additionally, the authors would like to thank the whole team of the Christian Doppler Laboratory for Optimization and Biomass Utilization in Heavy Metal Recycling at the Chair of Nonferrous Metallurgy at the Montanuniversitaet Leoben, Austria. Finally, the authors wish to thank Mr. Manuel Leuchtenmüller for supplying the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Rösler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rösler, G., Pichler, C., Antrekowitsch, J. et al. “2sDR”: Process Development of a Sustainable Way to Recycle Steel Mill Dusts in the 21st Century. JOM 66, 1721–1729 (2014). https://doi.org/10.1007/s11837-014-1131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1131-8

Keywords

Navigation