Skip to main content
Log in

Estimation Model for Electrical Conductivity of Molten CaF2-Al2O3-CaO Slags Based on Optical Basicity

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Slag properties, such as electrical conductivity, thermal conductivity, density, viscosity, and surface tension, and the prediction of these properties play an important role in melting and metal refining. Optical basicity depends on the electronegativity of the ions of an individual oxide. This feature represents the bonding characteristics, ionization ability, ion size, and consequently the mobility of free ions inside the slag. These properties affect the electrical conductivity of slags. Therefore, in the current study, various slags containing mainly CaF2 and various oxides were prepared. The optical basicity value of each slag was calculated and their electrical conductivities were measured between 1450°C and 1600°C. The relationship between the optical basicity and the measured properties were discussed. It was observed that increasing optical basicity increases the electrical conductivity as well as the temperature. Thus, a new model for predicting electrical conductivity of slags was built between 1450°C and 1600°C depending on optical basicity and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Mattar, in 6th International Tooling Conference (TOOL) (Karlstad University Press, Karlstad, 2002), pp. 403–409.

  2. K. Mehrabi, M. Rahimipour, and A. Shokuhfar, Int. J. Iron Steel Soc. Iran 2, 37 (2005).

    Google Scholar 

  3. P. Presoly, J. Korp, and R. Schneider, Arch. Metall. Mater. 53, 1 (2008).

    Google Scholar 

  4. S. Hara, H. Hashimoto, and K. Ogino, Trans. Iron Steel Inst. Jpn. 23, 1053 (1983).

    Article  Google Scholar 

  5. W. Chiho and X. Shunhua, ISIJ Int. 33, 239 (1993).

    Article  Google Scholar 

  6. R.C. Behera and U.K. Mohanty, ISIJ Int. 41, 834 (2001).

    Article  Google Scholar 

  7. J. Björkvall, D. Sichen, and S. Seetharaman, Ironmak. Steelmak. 28, 250 (2001).

    Article  Google Scholar 

  8. K.C. Mills and B.J. Keene, Int. Mater. Rev. 32, 1 (1987).

    Article  Google Scholar 

  9. L. Segers, A. Fontana, and R. Winand, Can. Metall. Quart. 22, 429 (1983).

    Article  Google Scholar 

  10. S.B. Sarkar, ISIJ Int. 9, 348 (1989).

    Article  Google Scholar 

  11. M. Askari and A.M. Cameron, Can. Metall. Q. 30, 207 (1991).

    Article  Google Scholar 

  12. J.A. Duffy and M.D. Ingram, J. Amer. Chem. Soc. 93, 6448 (1971).

    Article  Google Scholar 

  13. J.A. Duffy and M.D. Ingram, J. Inorg. Nucl. Chem. 37, 1203 (1975).

    Article  Google Scholar 

  14. J.A. Duffy, J. Phys. Chem. B 108, 7641 (2004).

    Article  Google Scholar 

  15. K.C. Mills and S. Sridhar, Ironmak. Steelmak. 26, 262 (1999).

    Article  Google Scholar 

  16. A. Kondratiev, E. Jak, and P.C. Hayes, JOM 54 (11), 41 (2002).

    Article  Google Scholar 

  17. K. Mills, Southern African Pyrometallurgy 2011 International Conference (Southern African Institute of Mining and Metallurgy, Johannesburg, 2011), pp. 1–52.

  18. J. Medved, P. Mrvar, V. Gontarev, F. Kavicka, and M. Zdovc, in Paper presented at Metal 2002 (Hradec Nad Moravicí, Czech Republic, 2002), pp. 1–8.

  19. K. Mills, L. Yuan, R. Jones, and J.S. Afr, Inst. Min. Metall. 111, 649 (2011).

    Google Scholar 

  20. G.-H. Zhang and K.-C. Chou, Metall. Mater. Trans. B 41, 131 (2009).

    Article  MATH  Google Scholar 

  21. U.B. Pal, C.J. MacDonald, E. Chiang, W.C. Chernicoff, K.C. Chou, J. Avyle, M.A. Molecke, and D. Melgaard, Metall. Mater. Trans. B 32, 1119 (2001).

    Article  Google Scholar 

  22. G.-H. Zhang, K.-C. Chou, and F.-S. Li, Int. J. Miner. Metall. Mater. 16, 500 (2009).

  23. J.T. Ju, Z.L. Lu, Z.Y. Jiao, J. Yang, and Z.H. Zhang, Mater. Sci. Forum 724, 460 (2012).

    Article  Google Scholar 

  24. X.M. Li, S.J. Wang, J.X. Zhao, Y.R. Cui, and Y.M. Chen, Adv. Mater. Res. 239–242, 1960 (2011).

    Google Scholar 

  25. K.W. Peng, P. Zhang, J.G. Xie, and H.L. Ma, Appl. Mech. Mater. 117–119, 269 (2011).

    Article  Google Scholar 

  26. K. Mills and B. Keene, Int. Met. Rev. 26, 21 (1981).

    Article  Google Scholar 

  27. B. Sikora and M. Zielinski, Hutnik 41, 433 (1974).

    Google Scholar 

  28. S. Krauss and G. Neuhof (Doctoral thesis, University of Freiberg, Sachsen, Bergakad. Freiberg, 1973).

  29. A. Mitchell and J. Cameron, Metall. Mater. Trans. B 2, 3361 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Birol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birol, B., Polat, G. & Saridede, M.N. Estimation Model for Electrical Conductivity of Molten CaF2-Al2O3-CaO Slags Based on Optical Basicity. JOM 67, 427–435 (2015). https://doi.org/10.1007/s11837-014-1230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1230-6

Keywords

Navigation