Skip to main content
Log in

Ordered Structures and Thermoelectric Properties of MNiSn (M = Ti, Zr, Hf)-Based Half-Heusler Compounds Affected by Close Relationship with Heusler Compounds

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Half-Heusler compounds are excellent thermoelectric materials. A characteristic of the half-Heusler–type ordered structure is the vacancy site that occupies one-fourth of all the lattice points. Therefore, a half-Heusler ABX phase (where A and B are typically transition metal elements, such as Ti, Zr, and Hf, and X represents a half-metal element such as Sn or Sb) has a crystallographically close relationship with a Heusler AB2X phase in the sense that the vacancy site in the half-Heusler phase is filled with B atoms in the Heusler phase. The thermoelectric properties are improved or affected by point lattice defects related to the vacancy site and the B site, such as the antisite atom B in the vacancy site, vacancies in the B site, and vacancy-site occupancy by quaternary C atoms. A modulated-like nanostructure due to point defects regarding vacancies and Ni atoms is formed for an instance in ZrNiSn alloys even close to the stoichiometric composition. Ni-rich nanoclusters are locally formed by excessive Ni antisite atoms in the vacancy site, which work as precursors of Heusler precipitates (TiNi2Sn, ZrNi2Sn, and so forth). The vacancy-site occupation in ZrNiSn with Co and Ir results in the drastic conversion of thermoelectric properties from n type to p type, and the effective reduction of the lattice thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.H. Westbrook and R.L. Fleischer, eds., Intermetallic Compounds—Principles and Practice, Vol. 2 Practice (Chichester, UK: Wiley, 1995).

    Google Scholar 

  2. D.M. Rowe, eds., CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC Press, 1995).

    Google Scholar 

  3. G.L. Bennett and E.A. Skrabek, Proceedings 15th International Conference Thermoelectrics, ICT’96, (Piscataway, NJ: IEEE, 1996), p. 357.

  4. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  Google Scholar 

  5. D.J. Anderson, Collection of Technical Papers—3rd International Energy Conversion Engineering Conference, Vol. 3 (San Francisco, CA: American Inst. Of Aieronautics and Astronautics, 2005), p. 1681.

    Google Scholar 

  6. F.G. Aliev, N.B. Brandt, V.V. Moshchalkov, V.V. Kozyrkov, R.V. Skolozdra, and A.I. Belogorokhov, Z. Phys. B 75, 167 (1989).

    Article  Google Scholar 

  7. T. Katayama, S.W. Kim, Y. Kimura, and Y. Mishima, J. Electron. Mater. 32, 1160 (2003).

    Article  Google Scholar 

  8. S.W. Kim, Y. Kimura, and Y. Mishima, Advanced Materials for Energy Conversion II, eds. D. Chandra, R.G. Bautista, and L. Schlapbach (Warrendale, PA: TMS, 2004), p. 377.

  9. Y. Hayashi, S.W. Kim, Y. Kimura, and Y. Mishima, Advanced Materials for Energy Conversion II, eds. D. Chandra, R.G. Bautista, and L. Schlapbach (Warrendale, PA: TMS, 2004), p. 367.

  10. Y. Kimura, T. Kuji, A. Zama, Y. Shibata, and Y. Mishima, MRS Symposium Proceedings Vol. 886 (Warrendale, PA: Mater Res. Soc., 2006), p. 331.

  11. Y. Kimura and A. Zama, Appl. Phys. Lett. 89, 172110 (2006).

    Article  Google Scholar 

  12. Y. Kimura, A. Zama, and Y. Mishima, Proceedings of 25th International Conference Thermoelectrics, ICT’2006, (Piscataway, NJ: IEEE, 2006), p. 115.

  13. S.W. Kim, Y. Kimura, and Y. Mishima, Intermetallics 15, 349 (2008).

    Article  Google Scholar 

  14. Y. Kimura, Y. Tamura, and T. Kita, Appl. Phys. Lett. 92, 012105 (2008).

    Article  Google Scholar 

  15. Y. Kimura, H. Ueno, and Y. Mishima, J. Electron. Mater. 38, 934 (2009).

    Article  Google Scholar 

  16. Y. Kimura, H. Ueno, T. Kenjo, C. Asami, and Y. Mishima, MRS Symposium Proceedings, vol. 1128 (Warrendale, PA: Mater. Res. Soc., 2009), p. 15.

  17. C. Asami, Y. Kimura, T. Kita, and Y. Mishima, MRS Symposium Proceedings, vol. 1128 (Warrendale, PA: Mater. Res. Soc., 2009), p. 179.

  18. Y. Kimura, T. Tanoguchi, and T. Kita, Acta Mater. 58, 4354 (2010).

    Article  Google Scholar 

  19. Y. Kimura, C. Asami, Y.W. Chai, and Y. Mishima, Mater. Sci. Forum 654–656, 2795 (2010).

    Article  Google Scholar 

  20. T. Kenjo, Y. Kimura, and Y. Mishima, MRS Symposium Proceedings, vol. 1218 (Warrendale, PA: Materials Research Society, 2010).

  21. Y. Kimura, T. Tanoguchi, Y. Sakai, Y.W. Chai, and Y. Mishima, MRS Symposium Proceedings, vol. 1295 (Warrendale, PA: Materials Research Society, 2011), p. 335.

  22. Y.W. Chai and Y. Kimura, Appl. Phys. Lett. 100, 033114 (2012).

    Article  Google Scholar 

  23. Y.W. Chai and Y. Kimura, Acta Mater. 61, 6684 (2013).

    Article  Google Scholar 

  24. Y.W. Chai, K. Yoshioka, and Y. Kimura, Scripta Mater. 83, 13 (2014).

    Article  Google Scholar 

  25. P. Villars, eds., Pearson’s Handbook Desk Edition Crystallographic Data for Intermetallic Phases (Materials Park, OH: ASM International, 1997).

    Google Scholar 

  26. J.H. Westbrook and R.L. Fleischer, eds., Intermetallic Compounds—Principles and Practice, Vol. 1 (Chichester, UK: Wiley, 1995).

    Google Scholar 

  27. Y.V. Stadnyk and R.V. Skolozdra, Neorg. Mater. 27, 2209 (1991).

    Google Scholar 

  28. Y.V. Stadnyk, L. Romaka, A. Horyn, A. Tkachuk, Y. Gorelenko, and P. Rogl, J. Alloy Compd. 387, 251 (2005).

    Article  Google Scholar 

  29. Y. Kimura and Y.W. Chai, Final report of “Grants-in-Aid for Scientific Research No. 23246120”, Japan Society for Promotion of Science (2014), in Japanese (submitted).

  30. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  Google Scholar 

  31. H. Hohl, A. Ramirez, C. Goldmann, and G. Ernst, J. Phys.: Condens. Matter 11, 1697 (1999).

    Google Scholar 

  32. J.W. Sharp, S.J. Poon, and H.J. Goldsmid, Phys. Stat. Sol. A 187, 507 (2001).

    Article  Google Scholar 

  33. T.M. Tritt, S. Bhattacharya, Y. Xia, V. Ponnambalam, S.J. Poon, and N. Thadhani, Appl. Phys. Lett. 81, 43 (2002).

    Article  Google Scholar 

  34. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005).

    Article  Google Scholar 

  35. H. Muta, T. Yamaguchi, K. Kurosaki, and S. Yamanaka, Proceedings of 24th International Conference on Thermoelectrics, ICT 2005 (Piscataway, NJ: IEEE, 2005), p. 339.

  36. H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, Mater. Trans. 47, 1453 (2006).

    Article  Google Scholar 

  37. H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, Proceedings of 25th International Conference on Thermoelectrics, ICT 2006 (Piscataway, NJ: IEEE, 2006), p. 120.

  38. S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, and J. Blumm, Appl. Phys. Lett. 88, 042106 (2006).

    Article  Google Scholar 

  39. L.D. Chen, X.Y. Huang, M. Zhou, X. Shi, and W.B. Zhang, J. Appl. Phys. 99, 064306 (2006).

    Article  Google Scholar 

  40. S. Bhattacharya, M.J. Stove, M. Russell, T.M. Tritt, Y. Xia, V. Ponnambalam, S.J. Poon, and N. Thadhani, Phys. Rev. B 77, 184203 (2008).

    Article  Google Scholar 

  41. K. Miyamoto, A. Kimura, K. Sakamoto, M. Ye, Y. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Fujimori, Y. Saitoh, E. Ikenaga, K. Kobayashi, J. Tadano, and T. Kanomata, Appl. Phys. Exp. 1, 081901 (2008).

    Article  Google Scholar 

  42. C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  Google Scholar 

  43. W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, X.F. Tang, Q.J. Zhang, and T.M. Tritt, Acta Mater. 58, 4705 (2010).

    Article  Google Scholar 

  44. G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Z. Ren, Adv. Energy Mater. 1, 643 (2011).

    Article  Google Scholar 

  45. S.J. Poon, D. Wu, S. Zhu, W. Xie, T.M. Tritt, P. Thomas, and R. Venkatasubramanian, J. Mater. Res. 26, 2795 (2011).

    Article  Google Scholar 

  46. J.P.A. Makongo, D.K. Misra, J.R. Salvador, N.J. Takas, G. Wang, M.R. Shabetai, A. Pant, P. Paudel, C. Uher, K.L. Stokes, and P.F.P. Poudeu, J. Solid State Chem. 184, 2948 (2011).

    Article  Google Scholar 

  47. J.P.A. Makongo, D.K. Misra, X. Zhou, A. Pant, M.R. Shabetai, X. Su, C. Uher, K.L. Stokes, and P.F.P. Poudeu, ss. J. Am. Chem. Soc. 133, 18843 (2011).

    Article  Google Scholar 

  48. H. Hazama, M. Matsubara, R. Asahi, and T. Takeuchi, J. Appl. Phys. 110, 063710 (2011).

    Article  Google Scholar 

  49. C. Yu, H. Xie, C. Fu, T. Zhu, and X. Zhao, J. Mater. Res. 27, 2457 (2012).

    Article  Google Scholar 

  50. V.V. Romaka, P. Rogl, L. Romaka, Y. Stadnyk, A. Grytsiv, O. Lakh, and V. Krayovskii, Intermetallics 35, 45 (2013).

    Article  Google Scholar 

  51. H. Miyazaki, T. Nakano, M. Inukai, K. Soda, Y. Izumi, T. Muro, J.G. Kim, M. Takata, M. Matsunami, S. Kimura, and Y. Nishino, Mater. Trans. 55, 1209 (2014).

    Article  Google Scholar 

  52. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Woelfing, and E.J. Bucher, J. Phys. Condens. Matter 10, 7843 (1998).

    Article  Google Scholar 

  53. Y. Xia, V. Ponnambalam, S. Bhattacharya, A.L. Pope, S.J. Poon, and T.M. Tritt, J. Phys.: Condens. Matter 13, 77 (2001).

    Google Scholar 

  54. S. Katsuyama, H. Matsushima, and M. Ito, J. Alloy Compd. 385, 232 (2004).

    Article  Google Scholar 

  55. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloy Compd. 407, 326 (2006).

    Article  Google Scholar 

  56. K. Kawano, K. Kurosaki, T. Sekimoto, H. Muta, and S. Yamanaka, Appl. Phys. Lett. 91, 062115 (2007).

    Article  Google Scholar 

  57. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).

    Article  Google Scholar 

  58. V. Ponnambalam, P.N. Alboni, J. Edwards, T.M. Tritt, S.R. Culp, and S.J. Poon, J. Appl. Phys. 103, 063716 (2008).

    Article  Google Scholar 

  59. T. Wu, W. Jiang, X. Li, Y. Zhou, and L. Chen, J. Appl. Phys. 102, 103705 (2007).

    Article  Google Scholar 

  60. K. Kawano, K. Kurosaki, H. Muta, and S. Yamanaka, J. Appl. Phys. 104, 013714 (2008).

    Article  Google Scholar 

  61. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 11, 556 (2011).

    Article  Google Scholar 

  62. H.J. Goldsmid and G.S. Nolas, Proceedings of 20th International Conference on Thermoelectrics, ICT 2001 (Piscataway, NJ: IEEE, 2001), p. 1.

  63. T. Graf, C. Felser, and S.P.P. Parkin, Prog. Solid State Chem. 39, 1 (2011).

    Article  Google Scholar 

  64. S. Ogut and K.M. Rabe, Phys. Rev. B 51, 10443 (1995).

    Article  Google Scholar 

  65. P. Larson, S.D. Mahanti, and M.G. Kanatzidis, Phys. Rev. B 62, 12754 (2000).

    Article  Google Scholar 

  66. P. Qiu, J. Yang, X. Huang, X. Chen, and L. Chen., Appl. Phys. Lett. 96, 152105 (2010).

  67. Z. Zhu, Y. Cheng, and U. Schwingenschlogl, Phys. Rev. 84, 113201 (2011).

    Article  Google Scholar 

  68. K. Kirievsky, Y. Gelbstein, and D. Fuks, J. Solid State Chem. 203, 247 (2013).

    Article  Google Scholar 

  69. Y. Kimura, unpublished work, T. Kuji, Master thesis, Tokyo Institute of Technology, in Japanese (2006).

  70. G.A. Slack, Phys. Rev. 105, 829 (1957).

    Article  Google Scholar 

  71. B. Abeles, Phys. Rev. B 29, 1906 (1963).

    Article  Google Scholar 

  72. A. Guinier, Compt. Rend. 206, 1641 (1938).

    Google Scholar 

  73. A. Guinier, Nature 142, 569 (1938).

    Article  Google Scholar 

  74. G.D. Preston, Proc. R. Soc. A 167, 534 (1938).

    Article  Google Scholar 

  75. G.D. Preston, Nature 142, 570 (1938).

    Article  Google Scholar 

Download references

Acknowledgements

A series of research works related to the present article was partially supported by Grants-in-Aid for Scientific Research No. 23246120—Japan Society for Promotion of Science (JSPS), and Advanced Low Carbon Technology Research and Development Program—Japan Science and Technology Agency (JST-ALCA). The authors are deeply grateful to the group members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshisato Kimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, Y., Chai, YW. Ordered Structures and Thermoelectric Properties of MNiSn (M = Ti, Zr, Hf)-Based Half-Heusler Compounds Affected by Close Relationship with Heusler Compounds. JOM 67, 233–245 (2015). https://doi.org/10.1007/s11837-014-1233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1233-3

Keywords

Navigation