Skip to main content
Log in

Influence of Basicity on High-Chromium Vanadium-Titanium Magnetite Sinter Properties, Productivity, and Mineralogy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of basicity on high-chromium vanadium-titanium magnetite (V-Ti-Cr) sintering was studied via sintering pot tests. The sinter rate, yield, and productivity were calculated before determining sinter strength (TI) and reduction degradation index (RDI). Furthermore, the effect of basicity on V-Ti-Cr sinter mineralogy was clarified using metallographic microscopy, x-ray diffraction, and scanning electron microscopy-energy-dispersive x-ray spectroscopy. The results indicate that increasing basicity quickly increases the sintering rate from 25.4 mm min−1 to 28.9 mm min−1, yield from 75.3% to 87.2%, TI from 55.4% to 64.8%, and productivity from 1.83 t (m2 h)−1 to 1.94 t (m2 h)−1 before experiencing a slight drop. The V-Ti-Cr sinter shows complex mineral composition, with main mineral phases such as magnetite, hematite, silicate (dicalcium silicate, Ca-Fe olivine, glass), calcium and aluminum silico-ferrite (SFCA/SFCAI) and perovskite. Perovskite is notable because it lowers the V-Ti sinter strength and RDI. The well intergrowths between magnetite and SFCA/SFCAI, and the decrease in perovskite and secondary skeletal hematite are the key for improving TI and RDI. Finally, a comprehensive index was calculated, and the optimal V-Ti-Cr sinter basicity also for industrial application was 2.55.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Samanta, M.C. Goswami, T.K. Baidya, S. Mukherjee, and R. Dey, Int. J. Miner. Metall. Mater. 20, 917 (2013).

    Article  Google Scholar 

  2. R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 793 (2003).

    Article  Google Scholar 

  3. T. Hu, X. Lv, C. Bai, Z. Lun, and G. Qiu, Metall. Mater. Trans. B 44B, 252 (2013).

    Article  Google Scholar 

  4. X. Si, X. Lu, C. Li, C. Li, and W. Ding, Int. J. Miner. Metall. Mater. 19, 384 (2012).

    Article  Google Scholar 

  5. D.-S. Chen, B. Song, L.-N. Wang, T. Qi, Y. Wang, and W.-J. Wang, Miner. Eng. 24, 864 (2011).

    Article  Google Scholar 

  6. M. Zhou, S.T. Yang, T. Jiang, and X.X. Xue, Ironmak. Steelmak. 42, 217 (2015).

    Article  Google Scholar 

  7. F. Wei-guo, W. Yong-cai, and X. Hong-en, J. Iron. Steel Res. Int. 18, 7 (2011).

    Article  Google Scholar 

  8. F. Wei-guo and X. Hong-en, Steel Res. Int. 82, 501 (2011).

    Article  Google Scholar 

  9. T. Umadevi, U.K. Bandopadhyay, P.C. Mahapatra, M. Prabhu, and M. Ranjan, Steel Res. Int. 81, 419 (2010).

    Article  Google Scholar 

  10. J.M.F. Clout and J.R. Manuel, Powder Technol. 130, 393 (2003).

    Article  Google Scholar 

  11. Z. Deqing, Z. Kecheng, P. Jian, F. Xiaohui, H. Youming, and J. Clout, J. Cent. South Univ. Technol. 10, 177 (2003).

    Article  Google Scholar 

  12. Y. Zhang, M. Zhou, M.S. Chu, X.X. Xue, and M.F. Jiang, Iron Steel 47, 1 (2012).

    Google Scholar 

  13. Y. Zhang, M. Zhou, M.S. Chu, and X.X. Xue, J. Northeast. Univ. 34, 383 (2013).

    Google Scholar 

  14. E. Kasai, Y. Sakano, T. Kawaguchi, and T. Nakamura, ISIJ Int. 40, 857 (2000).

    Article  Google Scholar 

  15. J. Zhang, X. Guo, and X. Huang, J. Iron. Steel Res. Int. 19, 1 (2012).

    Article  MATH  Google Scholar 

  16. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, ISIJ Int. 53, 774 (2013).

    Article  Google Scholar 

  17. T.R.C. Patrick and M.I. Pownceby, Metall. Mater. Trans. B 33B, 79 (2002).

    Article  Google Scholar 

  18. Z. Fang, A. Shengli, L. Guoping, and W. Yici, J. Iron. Steel Res. Int. 19, 1 (2012).

    Article  Google Scholar 

  19. W. Yici, Z. Jianliang, Z. Fang, and L. Guoping, J. Iron. Steel Res. Int. 18, 1 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National High Technology Research and Development Program of China (863 Program) (Grant No.2012AA062302 and 2012AA062304), the Program of the National Natural Science Foundation of China (Grant Nos. 51090384 and 51174051), and the program of the international cooperation of Ministry of Science and Technology Major of China (Grant No. 2012DFR60210) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Yang, S., Jiang, T. et al. Influence of Basicity on High-Chromium Vanadium-Titanium Magnetite Sinter Properties, Productivity, and Mineralogy. JOM 67, 1203–1213 (2015). https://doi.org/10.1007/s11837-015-1326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1326-7

Keywords

Navigation