Skip to main content
Log in

Thermodynamic Aspects of Homogeneous Nucleation Enhanced by Icosahedral Short Range Order in Liquid Fcc-Type Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We have recently shown that minute solute element additions to liquid metallic alloys can strongly influence the nucleation of the fcc phase and act as a grain refinement method. Electron back-scattered diffraction observations revealed a concomitant increase in the percentage of nearest neighbor (nn) grains that are in a twin relationship. Furthermore, multiple-twinned (MT) nn grain configurations with a fivefold symmetry around a common \(\langle 110\rangle \) direction have been identified, an occurrence that can be explained when the symmetry of the icosahedron is accounted for. It was then conjectured that a new nucleation mechanism occurs in two steps: first, the formation of small icosahedral quasicrystals in the melt, followed by heteroepitaxy of the fcc phase on facets of these quasicrystals. In the present contribution, based on thermodynamics arguments, it is proposed that the first step occurs by spinodal decomposition of the liquid, in a manner similar to Guinier–Preston zones formation in solid state precipitation, while the second step is a transformation of these quasicrystal precursors into MT-fcc nanocrystals once the driving force for this transformation is sufficient to overcome the fcc-liquid interfacial energy and the elastic strains associated with MT-fcc nanoparticles. This explanation sets up guidelines for finding solute elements and composition ranges that favor this grain refinement mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Kurtuldu, P. Jarry, M. Rappaz, Acta Mater. 61, 7098 (2013).

    Article  Google Scholar 

  2. G. Kurtuldu, A. Sicco, M. Rappaz, Acta Mater. 70, 240 (2014).

    Article  Google Scholar 

  3. F.C. Frank, Proc. R. Soc. Lond. A Math. Phys. Sci. 215, 43 (1952).

    Article  Google Scholar 

  4. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  Google Scholar 

  5. X. Fang, C. Wang, Y. Yao, Z. Ding, K. Ho, Phys. Rev. B 83, 224203 (2011).

    Article  Google Scholar 

  6. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann, G. Reiter, Nature 408, 839 (2000).

    Article  Google Scholar 

  7. V. Simonet, F. Hippert, M. Audier, R. Bellissent, Phys. Rev. B 65, 024203 (2001).

    Article  Google Scholar 

  8. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D. Herlach, Phys. Rev. Lett. 89, 075507 (2002).

    Article  Google Scholar 

  9. D. Holland-Moritz, T. Schenk, R. Bellissent, V. Simonet, K. Funakoshi, J. Merino, T. Buslaps, S. Reutzel, J. Non Cryst. Solids 312, 47 (2002).

    Article  Google Scholar 

  10. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  Google Scholar 

  11. H. Zhang, D. Wang, K. Kuo, Phys. Rev. B 37, 6220 (1988).

    Article  Google Scholar 

  12. H. Zhang, D. Wang, K. Kuo, J. Mater. Sci. 24, 2981 (1989).

    Article  Google Scholar 

  13. A. Srivastava, S. Ranganathan, Acta Mater. 44, 2935 (1996).

    Article  Google Scholar 

  14. M. Cooper, Acta Crystallogr. 13, 257 (1960).

    Article  Google Scholar 

  15. Z. He, B. Zou, K. Kuo, J. Alloys Compd. 417, L4 (2006).

    Article  Google Scholar 

  16. K. Kelton, G. Lee, A. Gangopadhyay, R. Hyers, T. Rathz, J. Rogers, M. Robinson, D. Robinson, Phys. Rev. Lett. 90, 195504 (2003).

    Article  Google Scholar 

  17. S. Henry, M. Rappaz, P. Jarry, Metall. Mater. Trans. A 29, 2807 (1998).

    Article  Google Scholar 

  18. M. Salgado-Ordorica, M. Rappaz, Acta Mater. 56, 5708 (2008).

    Article  Google Scholar 

  19. J.P. Nielsen, J. Tuccillo, J. Dent. Res. 45, 964 (1966).

    Article  Google Scholar 

  20. D. Ott, C.J. Raub, Gold Bull. 14, 69 (1981).

    Article  Google Scholar 

  21. H. Renner, G. Schlamp, D. Hollmann, H. M. Lüschow, P. Tews, J. Rothaut, K. Dermann, A. Knödler, C. Hecht, M. Schlott, R. Drieselmann, C. Peter, and R. Schiele, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2000).

  22. S. Ino, J. Phys. Soc. Jpn. 21, 346 (1966).

    Article  Google Scholar 

  23. S. Ino, J. Phys. Soc. Jpn. 27, 941 (1969).

    Article  Google Scholar 

  24. K. Kelton, Int. Mater. Rev. 38, 105 (1993).

    Article  Google Scholar 

  25. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).

    Article  Google Scholar 

  26. A. Zaitsev, N. Zaitseva, E.K. Shakhpazov, N. Arutyunyan, S. Dunaev, Doklady Physical Chemistry, vol. 406 (Springer, Berlin, 2006).

    Google Scholar 

  27. D. Chakrabarti, D. Laughlin, J. Phase Equilib. 8, 132 (1987).

    Article  Google Scholar 

  28. M. Riabkina, L. Gal-Or, Y. Fishman, G. Iram, Gold Bull. 17, 62 (1984).

    Article  Google Scholar 

  29. G. Kurtuldu, P. Jessner, M. Rappaz, J. Alloys Compd. 621, 283 (2015).

    Article  Google Scholar 

  30. Y. Liang, C. Guo, C. Li, Z. Du, J. Alloys Compd. 460, 314 (2008).

    Article  Google Scholar 

  31. O. Kubaschewski, G. Heymer, Trans. Faraday Soc. 56, 473 (1960).

    Article  Google Scholar 

  32. V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Elsevier, Amsterdam, 2010).

    Google Scholar 

  33. J.C. Baker, J.W. Cahn, The Selected Works of John W. Cahn (2013).

  34. V. Fournée, J. Ledieu, M. Shimoda, M. Krajčí, H.-R. Sharma, R. McGrath, Isr. J. Chem. 51, 1314 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Michele Ceriotti, Jon Dantzig and Wilfried Kurz for many helpful discussions, as well as Rolex and Constellium for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rappaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rappaz, M., Kurtuldu, G. Thermodynamic Aspects of Homogeneous Nucleation Enhanced by Icosahedral Short Range Order in Liquid Fcc-Type Alloys. JOM 67, 1812–1820 (2015). https://doi.org/10.1007/s11837-015-1328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1328-5

Keywords

Navigation