Skip to main content
Log in

Effect of Physiochemical Properties and Bath Chemistry on Alumina Dissolution Rate in Cryolite Electrolyte

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The relationships of dissolution rate to alumina specifications and bath chemistry including electrolyte composition, operating temperature and superheat were investigated. The key physiochemical properties of industrial alumina samples were tested including moisture content, loss on ignition, surface area and phase composition. The dissolution of these samples in several bath compositions was observed through a quartz crucible equipped with a visual recording system. The dissolution rate increased with increasing loss on ignition and surface area. The operating temperatures and existing alumina concentration in the electrolyte had a greater impact on the alumina dissolution rate than the minor change of the bath compositions and superheat. Same trends were also obtained for the lab-calcined alumina samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Levin and D. Brandon, J. Am. Ceram. Soc. 81, 1995–2012 (1998).

    Article  Google Scholar 

  2. B. Whittington and D. Ilievski, Chem. Eng. J. 98, 89–97 (2004).

    Article  Google Scholar 

  3. M. Hyland, A. Gillespie, and J. Metson, Light Metals (Warrendale, PA: TMS, 1997), pp. 113–117.

    Google Scholar 

  4. W.E. Haupin and H. Kvande, Essent. Read. Light Met. Alum. Reduct. Technol. 2, 903–909 (1993).

    Google Scholar 

  5. W.E. Haupin, Light Metals (Warrendale, PA: TMS, 1984), pp. 1429–1439.

    Google Scholar 

  6. M.M. Hyland, E.C. Patterson, and B.J. Welch, Light Metals (Warrendale, PA: TMS, 2004), pp. 361–366.

    Google Scholar 

  7. N. Wai-Poi and B.J. Welch, Light Metals (Warrendale, PA: TMS, 1994), pp. 345–350.

    Google Scholar 

  8. A.B. Heiberg, G. Wedde, O.K. Bockman, and S.O. Strommen, Light Metals (Warrendale, PA: TMS, 1999), pp. 255–261.

    Google Scholar 

  9. D.S. Wong, N.I. Tjahyono, and M.M. Hyland, Light Metals (Orlando, FL: TMS, 2012), pp. 833–838.

    Google Scholar 

  10. Å. Sterten, Electrochim. Acta 25, 1673–1677 (1980).

    Article  Google Scholar 

  11. B. Gilbert, E. Robert, E. Tixhon, J.E. Olsen, and T. Østvold, Light Metals (Warrendale, PA: TMS, 1995), pp. 181–194.

    Google Scholar 

  12. E. Robert, J.E. Olsen, V. Danek, E. Tixhon, T. Østvold, and B. Gilbert, J. Phys. Chem. B. 101, 9447–9457 (1997).

    Article  Google Scholar 

  13. Y. Zhang and R.A. Rapp, Metall. Mater. Trans. B 35B, 509–515 (2004).

    Article  Google Scholar 

  14. G. I. Kuschel, The Effect of Alumina Properties and Smelter Operating Conditions on the Dissolution Behaviour of Alumina, PhD thesis, The University of Auckland, Auckland, New Zealand, 1990

  15. B.J. Welch and G.I. Kuschel, JOM 59, 50–54 (2007).

    Article  Google Scholar 

  16. E. Skybakmoen, A. Solheim, and Å. Sterten, Metall. Mater. Trans. B 28, 81–86 (1997).

    Article  Google Scholar 

  17. R.G. Haverkamp and B.J. Welch, Chem. Eng. Process. 37, 177–187 (1998).

    Article  Google Scholar 

  18. J. Tie, Z. Qiu, and G. Lu, Non-ferrous Met. 46, 49–51 (1994).

    Google Scholar 

  19. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, and P. Scardi, J. Appl. Cryst. 32, 36–50 (1999).

    Article  Google Scholar 

  20. Y. Yang, B. Gao, Z. Wang, Z. Shi, and X. Hu, Metall. Mater. Trans. B 44, 1296–1303 (2013).

    Article  Google Scholar 

  21. Y. Yang, B. Gao, Z. Wang, Z. Shi, X. Hu, and J. Yu, Metall. Mater. Trans. B 45, 1150–1156 (2014).

    Article  Google Scholar 

  22. X. Hu, J. Qu, B. Gao, Z. Shi, F. Liu, and Z. Wang, T. Nonferr. Metal. Soc. 21, 402–406 (2011).

    Article  Google Scholar 

  23. A.R. Johnson, Light Metals (Warrendale, PA: TMS, 1981), pp. 373–387.

    Google Scholar 

  24. P. Chartrand and A.D. Pelton, Light Metals (Warrendale, PA: TMS, 2002), pp. 245–252.

    Google Scholar 

  25. L. Less, Light Metals, Vol. 1 (New York, NY: TMS, 1976), pp. 315–331.

    Google Scholar 

  26. J. Thonstad, F. Nordmo, and J.B. Paulsen, Metall. Trans. 3, 403–408 (1972).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support provided by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAE08B01), the National Natural Science Foundation of China (Grant Nos. 51074045, 51074046, 51228401, 51322406, 51434005, 51474060), the NEU foundation (No. N130402011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingliang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Gao, B., Wang, Z. et al. Effect of Physiochemical Properties and Bath Chemistry on Alumina Dissolution Rate in Cryolite Electrolyte. JOM 67, 973–983 (2015). https://doi.org/10.1007/s11837-015-1379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1379-7

Keywords

Navigation