Skip to main content
Log in

Development of Surface Nanocomposite Based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of Its Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, an Al/Al2O3-Al3Ni hybrid nanocomposite was developed on the surface of Al6061-T6 plate with preplaced NiO powder on its surface using friction-stir processing (FSP). The x-ray diffraction results showed that NiO particles were reduced by Al during FSP and Al3Ni and Al2O3 were formed as in situ reaction products. A thermodynamic analysis indicated that the reaction is thermodynamically possible and exothermic. Thus, the reaction that is initiated by the severe plastic deformation and friction associated with FSP could continue by the heat that is generated by the exothermic reaction. During each FSP pass, the FSP products are detached quickly from the interface and the growth of the particles is limited and nanometer-sized reinforcements were produced. The presence of facet and hexagonal nanoparticles in transmission electron microscopy micrographs of the stir zone confirmed the formation of Al3Ni and Al2O3 nanoreinforcements, respectively. Mechanical test results showed that the microhardness and ultimate tensile strength in the stir zone of nanocomposite decreased due to the dissolution of precipitates in Al6061-T6 during FSP. The tribological properties of Al6061 at 350°C were significantly improved by developing surface Al/Al2O3-Al3Ni nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ASM Handbook Committee, Properties and selection: nonferrous alloys and special-purpose materials.ASM Handbook, Vol. 2 (Materials Park, OH: ASM International, 1993), pp. 15–20.

    Google Scholar 

  2. A.K.P. Rao, K. Das, B.S. Murty, and M. Chakraborty, J. Wear 257, 148 (2004).

    Article  Google Scholar 

  3. M. Harun, I.A. Talib, and A.R. Daud, J. Wear 194, 54 (1996).

    Article  Google Scholar 

  4. A.G. Wang and I.M. Hutchings, J. Mater. Sci. Technol. 5, 71 (1989).

    Article  Google Scholar 

  5. M. Gui and S.B. Kang, J. Mater. Lett. 46, 296 (2000).

    Article  Google Scholar 

  6. C. Hu and T.N. Baker, J. Mater. Sci. 30, 891–897 (1995).

    Article  Google Scholar 

  7. E. Yun and S. Lee, J. Surf. Coat. Technol. 200, 3478 (2006).

    Article  Google Scholar 

  8. A.N. Attia, Mater. Des. 22, 451 (2001).

    Article  Google Scholar 

  9. R.S. Mishra, Z.Y. Ma, and I. Charit, Mater. Sci. Eng. 341, 307 (2003).

    Article  Google Scholar 

  10. J.Q. Su, T.W. Nelson, and C.J. Sterling, J. Scr. Mater. 52, 135 (2005).

    Article  Google Scholar 

  11. J.Q. Su, T.W. Nelson, and C.J. Sterling, J. Mater. Res. 18, 1757 (2003).

    Article  Google Scholar 

  12. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, J. Mater. Sci. Eng. A 419, 344 (2006).

    Article  Google Scholar 

  13. Y. Mazaheri, F. Karimzadeh, and M.H. Enayati, J. Mater. Proc. Technol. 211, 1614 (2011).

    Article  Google Scholar 

  14. J. Qiana, J. Li, J. Xiong, F. Zhang, and X. Lin, J. Mater. Sci. Eng. A 550, 279 (2012).

    Article  Google Scholar 

  15. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, J. Acta Mater. 54, 5241 (2006).

    Article  Google Scholar 

  16. H.S. Choo, K.Y. Lee, Y.S. Kim, and J.H. Wee, Intermetallics 13, 157 (2005).

    Article  Google Scholar 

  17. L. Ke, C. Huang, L. Xing, and K. Huang, J. Alloy. Compd. 503, 494 (2010).

    Article  Google Scholar 

  18. G.R. Cui, Z.Y. Ma, and S.X. Li, J. Acta Mater. 57, 5718 (2009).

    Article  Google Scholar 

  19. E. Dastanpoor, M.H. Enayati, and F. Karimzadeh, Adv. Powder Technol. 25, 519 (2014).

    Article  Google Scholar 

  20. S.Z. Anvari, F. Karimzadeh, and M.H. Enayati, J. Alloy. Compd. 477, 178 (2009).

    Article  Google Scholar 

  21. H. Sieber, J.S. Park, J. Weissmüller, and J.H. Perepezko, J. Acta Mater. 49, 1139 (2001).

    Article  Google Scholar 

  22. S.R. Anvari, F. Karimzadeh, and M.H. Enayati, J. Alloy. Compd. 562, 48 (2013).

    Article  Google Scholar 

  23. R.S. Mishra and Z.Y. Ma, J. Mater. Sci. Eng. R 50, 1 (2005).

    Article  MATH  Google Scholar 

  24. O. Kubaschewski, C.B. Alocock, and P.J. Spencer, Materials Thermochemistry, 6th ed. (New York: Pergamon, 1993).

    Google Scholar 

  25. S. Prakrathi, M. Ravikumar, K.R. Udupa, and K. Udaya, Bhat. J. Mater. Sci. 2013, 1 (2013).

    Google Scholar 

  26. P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, and P.M.S.T. de Castro, J. Mater. Des. 30, 180 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Adel Mehraban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adel Mehraban, F., Karimzadeh, F. & Abbasi, M.H. Development of Surface Nanocomposite Based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of Its Properties. JOM 67, 998–1006 (2015). https://doi.org/10.1007/s11837-015-1383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1383-y

Keywords

Navigation