Skip to main content
Log in

Modeling the Evolution of Interface Morphologies in Metallic Layered Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

During high-temperature annealing of accumulatively roll-bonded metallic multilayers, long straight interfaces between immiscible constituents (e.g., Cu/Nb) have been observed to evolve into a wavy shape consisting of corners and facets. To understand the underlying mechanism of such a critical phenomenon, we developed a mesoscale thermodynamic model to simulate the evolution of interface morphology. In the model, we have considered both the anisotropy of interfacial energy and the corner energy that is pertinent to the formation of facets and interfacial dislocation accumulation. Our simulation results indicate that the interface prefers to be faceted, which is in excellent agreement with the experimental observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.M.C. Yang, T. Tsakalakos, and J.E. Hilliard, J. Appl. Phys. 48, 876 (1977).

    Article  Google Scholar 

  2. I.N. Mastorakos, H.M. Zbib, and D.F. Bahr, Appl. Phys. Lett. 94, 173114 (2009).

    Article  Google Scholar 

  3. Y.P. Li, X.F. Zhu, J. Tan, B. Wu, W. Wang, and G.P. Zhang, J. Mater. Res. 24, 728 (2009).

    Article  Google Scholar 

  4. J.Y. Zhang, X. Zhang, R.H. Wang, S.Y. Lei, P. Zhang, J.J. Niu, G. Liu, G.J. Zhang, and J. Sun, Acta Mater. 59, 7368 (2011).

    Article  Google Scholar 

  5. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  Google Scholar 

  6. H. Wan, Y. Shen, J. Wang, Z. Shen, and X. Jin, Acta Mater. 60, 6869 (2012).

    Article  Google Scholar 

  7. H. Wan, Y. Shen, X. He, and J. Wang, JOM 65, 443 (2013).

    Article  Google Scholar 

  8. S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, and N.A. Mara, Nat. Commun. 4, 1696 (2013).

    Article  Google Scholar 

  9. J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, and N.A. Mara, Philos. Mag. 93, 718 (2013).

    Article  Google Scholar 

  10. D. Josell, W.C. Carter, and J.E. Bonevich, Nanostruct. Mater. 12, 387 (1999).

    Article  Google Scholar 

  11. A.C. Lewis, D. Josell, and T.P. Weihs, Scripta Mater. 48, 1079 (2003).

    Article  Google Scholar 

  12. A. Misra, R.G. Hoagland, and H. Kung, Philos. Mag. 84, 1021 (2004).

    Article  Google Scholar 

  13. A. Misra and R.G. Hoagland, J. Mater. Res. 20, 2046 (2005).

    Article  Google Scholar 

  14. D. Josell and F. Spaepen, Mater. Res. Soc. Bull. 24, 39 (1999).

    Google Scholar 

  15. J. Wang and P.M. Anderson, Acta Mater. 53, 5089 (2005).

    Article  Google Scholar 

  16. W. Zhang, P. Sachenko, and I. Gladwell, Acta Mater. 52, 107 (2004).

    Article  Google Scholar 

  17. E. Rabkin, L. Klinger, and V. Semenov, Acta Mater. 48, 1533 (2000).

    Article  Google Scholar 

  18. W. Zhang and I. Gladwell, J. Cryst. Growth 277, 608 (2005).

    Article  Google Scholar 

  19. F.Y. Génin, W.W. Mullins, and P. Wynblatt, Acta Metall. Mater. 42, 1489 (1994).

    Article  Google Scholar 

  20. H. Zhang and H. Wong, Acta Mater. 50, 1983 (2002).

    Article  Google Scholar 

  21. D. Min and H. Wong, J. Appl. Phys. 100, 053523 (2006).

    Article  Google Scholar 

  22. A. Novick-Cohen, O. Zelekman-Smirin, and A. Vilenkin, Acta Mater. 58, 813 (2010).

    Article  Google Scholar 

  23. K. Hackl, F.D. Fischer, K. Klevakina, J. Renner, and J. Svoboda, Acta Mater. 61, 1581 (2013).

    Article  Google Scholar 

  24. J.W. Barrett, H. Garcke, and R. Nurnberg, Eur. J. Appl. Math. 21, 519 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Zhang and I. Gladwell, Comput. Mater. Sci. 27, 461 (2003).

    Article  Google Scholar 

  26. W. Zhang and I. Gladwell, Comput. Mater. Sci. 40, 57 (2007).

    Article  Google Scholar 

  27. K. Kang, J. Wang, and I.J. Beyerlein, J. Appl. Phys. 111, 053531 (2012).

    Article  Google Scholar 

  28. K. Kang, J. Wang, S.J. Zheng, and I.J. Beyerlein, J. Appl. Phys. 112, 073501 (2012).

    Article  Google Scholar 

  29. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, and J. Wang, Prog. Mater Sci. 58, 749 (2013).

    Article  MATH  Google Scholar 

  30. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (New York: Wiley, 1982), p. 80.

    Google Scholar 

Download references

Acknowledgements

The research was supported by the State Key Development Program for Basic Research of China (973 Programs) (Grant No. 2012CB619600) and the National Science Foundation of China (NSFC) through Projects 51471107 and 50971090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Shen, Y. Modeling the Evolution of Interface Morphologies in Metallic Layered Composites. JOM 67, 1486–1490 (2015). https://doi.org/10.1007/s11837-015-1419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1419-3

Keywords

Navigation