Skip to main content
Log in

Multiscale Simulation of Damage Progression in 5-Harness Satin Weave Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A multiscale finite element (FE) model is developed to predict damage and failure of 5-harness satin weave composites both at the micro-scale (fiber, matrix and interface) and meso-scale (ply). In the meso-scale damage model, specific characteristics of the 5HS, such as the yarn undulation, shape and orientation, are taken into account to characterize the failure mechanisms of the interlaced yarns. In the micro-scale damage model of the study, a micro-model including matrix, interface and fibers is considered and simplified to a two-dimensional problem in the plane of a cross-section of the yarn. In the micro-FE model, cohesive elements based on a traction–separation law have been used which allows for some detailed interpretation of the micro-mechanical interaction of fiber and matrix under unidirectional tension. The predictions based on the numerical simulations are compared to the experimental data from the literature. The results indicate that the meso-FE model accurately captures weft yarn transverse damage. Moreover, the micro-FE model shows the contributions of failure from micro-mechanisms, including the in-plane matrix cracking and interfacial debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.T. Hahn and R. Pandey, J. Eng. Mater. Technol. 116, 517 (1994).

    Article  Google Scholar 

  2. V.R. Aitharaju and R.C. Averill, Compos. Sci. Technol. 59, 1901 (1999).

    Article  Google Scholar 

  3. D. Scida, Z. Aboura, M.L. Benzeggagh, and E. Bocherens, Compos. Sci. Technol. 59, 505 (1999).

    Article  Google Scholar 

  4. M.V. Donadon, B.G. Falzon, L. Iannucci, and J.M. Hodgkinson, Compos. Sci. Technol. 67, 2467 (2007).

    Article  Google Scholar 

  5. M. Zako and Y. Uetsuji, Int. J. Damage Mech 11, 187 (2002).

    Article  Google Scholar 

  6. Z. Hashin and A. Rotem, J. Compos. Mater. 7, 448 (1973).

    Article  Google Scholar 

  7. Z. Hashin, J. Appl. Mech. 47, 329 (1980).

    Article  Google Scholar 

  8. P. Linde, J. Pleitner, H.D. Boer, C. Carmone, ABAQUS User’s Conference (2004).

  9. G.Z. Voyiadjis and P.I. Kattan, Compos. Struct. 92, 2187 (2010).

    Article  Google Scholar 

  10. M. Zako, Y. Uetsuji, and T. Kurashiki, Compos. Sci. Technol. 63, 507 (2003).

    Article  Google Scholar 

  11. A. Tabiei and I. Ivanov, Int. J. Non. Mech. 39, 175 (2004).

    Article  MATH  Google Scholar 

  12. S. Daggumati, I. De Baere, W. Van Paepegem, J. Degrieck, J. Xu, S.V. Lomov, and I. Verpoest, Compos. Sci. Technol. 70, 1926 (2010).

    Article  Google Scholar 

  13. S. Daggumati, W. Van Paepegem, J. Degrieck, J. Xu, S.V. Lomov, and I. Verpoest, Compos. Sci. Technol. 70, 1934 (2010).

    Article  MATH  Google Scholar 

  14. M.D. Rintoul and S. Torquato, J. Colloid Interf. Sci. 186, 467 (1997).

    Article  Google Scholar 

  15. V.I. Kushch, S.V. Shmegera, and L. Mishnaevsky Jr, Int. J. Solids Struct. 45, 2758 (2008).

    Article  MATH  Google Scholar 

  16. V.I. Kushch, S.V. Shmegera, and L. Mishnaevsky Jr, Compos. Sci. Technol. 71, 989 (2011).

    Article  Google Scholar 

  17. Abaqus Scripting User’s Manual. Abaqus Inc. (2009).

  18. S.V. Lomov, G. Huysmans, Y. Luo, R.S. Parnas, A. Prodromou, I. Verpoest, and F.R. Phelan, Compos Part A 32, 1379 (2001).

    Article  Google Scholar 

  19. I. Verpoest and S.V. Lomov, Compos. Sci. Technol. 65, 2563 (2005).

    Article  Google Scholar 

  20. S.V. Lomov, D.S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai, and S. Hirosawa, Compos. Sci. Technol. 67, 1870 (2007).

    Article  MATH  Google Scholar 

  21. H. Zhu, B.V. Sankar, and R.V. Marrey, J. Compos. Mater. 32, 766 (1998).

    Article  Google Scholar 

  22. B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Andoc, Compos. Sci. Technol. 61, 1615 (2001).

    Article  MATH  Google Scholar 

  23. B.M. Zhang, Z. Yang, and X.Y. Sun, Comput. Mater. Sci. 49, 645 (2010).

    Article  Google Scholar 

  24. I. Lapczyk and J.A. Hurtado, Composites Part A 38, 2333 (2007).

    Article  Google Scholar 

  25. G. Alfano and M.A. Crisfield, Int. J. Numer. Methods Eng. 50, 1701 (2001).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11222218, 11321202, 11402228), the National Basic Research Program of China under Grant No. 2011CB711103, and Zhejiang Provincial Natural Science Foundation of China (LZ14A020001). We are grateful to Prof. Lu Zixing for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxing Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Qu, S. Multiscale Simulation of Damage Progression in 5-Harness Satin Weave Composites. JOM 67, 1491–1498 (2015). https://doi.org/10.1007/s11837-015-1433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1433-5

Keywords

Navigation