Skip to main content
Log in

In Situ Scanning Electron Microscopy Observations of Contraction Twinning and Double Twinning in Extruded Mg-1Mn (wt.%)

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The tensile deformation mechanisms of an extruded Mg-1Mn (wt.%) alloy at 323 K (50°C) was investigated by a combination of in situ tensile testing and electron backscatter diffraction analysis. The strong basal texture of the material resulted in placing the c-axis of most of the grains under compression during tensile loading parallel to the extrusion axis. Basal, prismatic, and pyramidal 〈c+a〉 slip activity was observed along with \( \left\{ {10\overline{1}2} \right\} \) extension twinning. However, \( \left\{ {10\overline{1}1} \right\} \) contraction twinning dominated the deformation. Although contraction twinning and pyramidal 〈c+a〉 slip both allow for c-component deformation, contraction twinning was preferred over pyramidal 〈c+a〉 slip, and this was expected to be due to the lower critical resolved shear stress (CRSS) value for the former mechanism at ambient temperatures. The contraction twins evolved into \( \left\{ {10\overline{1}1} \right\} - \left\{ {10\overline{1}2} \right\} \) double twins with an increase in strain. The propensity of double twins to form shear bands due to shear localization within the double twinned region, which eventually resulted in cracks, led to the failure of the material. The shear localization in the double twins was expected to be due to the enhanced activity of basal slip in the twinned volume. The observations from the present study suggest that contraction twinning may play a critical role in the limited cold formability of magnesium and its alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, Vol. 15 (Materials Park, OH: ASM International, 1999).

    Google Scholar 

  2. B.L. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).

    Article  Google Scholar 

  3. M.H. Yoo, Metall. Trans. A 12, 409 (1981).

    Article  Google Scholar 

  4. J. Bohlen, S. Yi, D. Letzig, and K.U. Kainer, Mater. Sci. Eng. A 527, 7092 (2010).

    Article  Google Scholar 

  5. W.B. Hutchinson and M.R. Barnett, Scr. Mater. 63, 737 (2010).

    Article  Google Scholar 

  6. A. Chapuis and J.H. Driver, Acta Mater. 59, 1986 (2011).

    Article  Google Scholar 

  7. W.H. Hartt and R.E. Reed-Hill, Trans. Metall. Soc. AIME 239, 1511 (1967).

    Google Scholar 

  8. R.E. Reed-Hill and W.D. Robertson, Acta Metall. 5, 717 (1957).

    Article  Google Scholar 

  9. R.E. Reed-Hill and W.D. Robertson, Acta Metall. 5, 728 (1957).

    Article  Google Scholar 

  10. H. Yoshinaga and R. Horiuchi, Trans. Jpn. Inst. Met. 4, 1 (1963).

    Article  Google Scholar 

  11. E.W. Kelley and W.F. Hosford, Trans. Metall. Soc. AIME 242, 5 (1968).

    Google Scholar 

  12. H. Yoshinaga, T. Obara, and S. Morozumi, Mater. Sci. Eng. 12, 255 (1973).

    Article  Google Scholar 

  13. B.C. Wonsiewicz and W.A. Backofen, Trans. Metall. Soc. AIME 239, 1422 (1967).

    Google Scholar 

  14. W.H. Hartt and R.E. Reed-Hill, Trans. Metall. Soc. AIME 242, 1127 (1968).

    Google Scholar 

  15. S.L. Couling, J.F. Pashak, and L. Sturkey, ASM Trans. Q. 51, 94 (1959).

    Google Scholar 

  16. M.R. Barnett, M.D. Nave, and C.J. Bettles, Mater. Sci. Eng. A 386, 205 (2004).

    Article  Google Scholar 

  17. M.R. Barnett, Mater. Sci. Eng. A 464, 8 (2007).

    Article  Google Scholar 

  18. M.R. Barnett, Z. Keshavarz, A.G. Beer, and X. Ma, Acta Mater. 56, 5 (2008).

    Article  Google Scholar 

  19. D. Ando, J. Koike, and Y. Sutou, Acta Mater. 58, 4316 (2010).

    Article  Google Scholar 

  20. M.D. Nave and M.R. Barnett, Scr. Mater. 51, 881 (2004).

    Article  Google Scholar 

  21. J. Koike, Metall. Mater. Trans. A 36, 1689 (2005).

    Article  Google Scholar 

  22. D. Ando and J. Koike, J. Jpn. Inst. Met. 71, 684 (2007).

    Article  Google Scholar 

  23. C.J. Boehlert, Z. Chen, A. Chakkedath, I. Gutiérrez-Urrutia, J. Llorca, J. Bohlen, S. Yi, D. Letzig, and M.T. Pérez-Prado, Philos. Mag. 93, 598 (2013).

    Article  Google Scholar 

  24. A. Chakkedath, J. Bohlen, S. Yi, D. Letzig, Z. Chen, and C.J. Boehlert, Metall. Mater. Trans. A 45, 3254 (2014).

    Article  Google Scholar 

  25. A. Chakkedath, J. Bohlen, S. Yi, D. Letzig, Z. Chen, and C.J. Boehlert, Proceedings of a Symposium Magnesium Technology 2015 (2015), pp. 109–114.

  26. C.J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, and M.T. Pérez-Prado, Acta Mater. 60, 1889 (2012).

    Article  Google Scholar 

  27. Z. Chen and C.J. Boehlert, JOM 65, 1237 (2013).

    Article  Google Scholar 

  28. C.J. Boehlert, H. Li, L. Wang, and B. Bartha, Adv. Mater. Process. 168, 41 (2010).

    Google Scholar 

  29. H. Li, C.J. Boehlert, T.R. Bieler, and M.A. Crimp, Philos. Mag. 95, 691 (2015).

    Article  Google Scholar 

  30. I.G. Dastidar, V. Khademi, T.R. Bieler, A.L. Pilchak, M.A. Crimp, and C.J. Boehlert, Mater. Sci. Eng. A 636, 289 (2015).

    Article  Google Scholar 

  31. A. Pandey, F. Kabirian, J.-H. Hwang, S.-H. Choi, and A.S. Khan, Int. J. Plast. 68, 111 (2015).

    Article  Google Scholar 

  32. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Int. J. Plast. 27, 688 (2011).

    Article  MATH  Google Scholar 

  33. J. Koike, Y. Sato, and D. Ando, Mater. Trans. 49, 2792 (2008).

    Article  Google Scholar 

  34. P. Cizek and M.R. Barnett, Scr. Mater. 59, 959 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Division of Material Research (Grant No. DMR1107117). The authors acknowledge Dr. Jan Bohlen, Dr. Sangborg Yi, and Dr. Dietmar Letzig of the Magnesium Innovation Centre MagIC, Helmholtz-Zentrum Geesthacht Zentrum für Material und Küstenforschung GmbH, (Geesthacht, Germany) for providing the processed material and also for helpful discussions. The authors also acknowledge Dr. María Teresa Pérez Prado and Dr. Javier Llorca of IMDEA Materials Institute (Madrid, Spain) and Professor Thomas Bieler of Michigan State University for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chakkedath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakkedath, A., Boehlert, C.J. In Situ Scanning Electron Microscopy Observations of Contraction Twinning and Double Twinning in Extruded Mg-1Mn (wt.%). JOM 67, 1748–1760 (2015). https://doi.org/10.1007/s11837-015-1478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1478-5

Keywords

Navigation