Skip to main content
Log in

Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work represents a state-of-the-art technique developed for the preparation of graphene from graphite–metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300–1400 cm−1) and (1500–1600 cm−1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.S. Sonawane, S. Mishra, and N.G. Shimpi, Polym. Plast. Technol. Eng. 49, 38 (2010).

    Article  Google Scholar 

  2. N.G. Shimpi, R.U. Kakade, S.S. Sonawane, A.D. Mali, and S. Mishra, Polym. Plast. Technol. Eng. 50, 758 (2011).

    Article  Google Scholar 

  3. S. Mishra, N.G. Shimpi, and A.D. Mali, J. Polym. Res. 18, 1715 (2011).

    Article  Google Scholar 

  4. N.G. Shimpi and S. Mishra, Polym. Plast. Technol. Eng. 51, 111 (2012).

    Article  Google Scholar 

  5. A. Chatterjee and S. Mishra, Macromol. Res. 21, 474 (2013).

    Article  Google Scholar 

  6. N.G. Shimpi and S. Mishra, J. Reinf. Plast. Compos. 32, 947 (2013).

    Article  Google Scholar 

  7. N.G. Shimpi, H.A. Sonawane, A.D. Mali, and S. Mishra, Polym. Bull. 71, 515 (2014).

    Article  Google Scholar 

  8. C. Hazra, D. Kundu, A. Chatterjee, A. Chaudhari, and S. Mishra, Colloid Surf. A 449, 96 (2014).

    Article  Google Scholar 

  9. S. Mishra and N.G. Shimpi, Polym. Plast. Technol. Eng. 47, 72 (2008).

    Article  Google Scholar 

  10. S. Mishra, S. Sonawane, A. Mukherji, and H.C. Mruthyunjaya, J. Appl. Polym. Sci. 100, 4190 (2006).

    Article  Google Scholar 

  11. N. Shimpi, A. Mali, D.P. Hansora, and S. Mishra, Nanosci. Nanoeng. 3, 8 (2015).

    Google Scholar 

  12. B. Yeole, T. Sen, D.P. Hansora, and S. Mishra, J. Appl. Polym. Sci. 132, 42379 (2015).

    Article  Google Scholar 

  13. T. Sen, N.G. Shimpi, and S. Mishra, Sens. Actuators B 190, 120 (2014).

    Article  Google Scholar 

  14. S. Mishra, N.G. Shimpi, and T. Sen, J. Polym. Res. 20, 1 (2013).

    Google Scholar 

  15. N.G. Shimpi and S. Mishra, J. Nanopart. Res. 12, 2093 (2010).

    Article  Google Scholar 

  16. S. Mishra and A. Chatterjee, Polym. Adv. Technol. 22, 1593 (2011).

    Article  Google Scholar 

  17. D. Ratna, S.B. Jagtap, R. Rathor, R.K. Kushwaha, N.G. Shimpi, and S. Mishra, Polym. Compos. 34, 1004 (2013).

    Article  Google Scholar 

  18. A. Chatterjee and S. Mishra, Partic. 11, 760 (2013).

    Article  Google Scholar 

  19. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Duobonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  20. H. Raza, Graphene Nanoelectronics (Berlin: Springer, 2012), pp. 15–586.

    Book  Google Scholar 

  21. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  22. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Prog. Mater. Sci. 56, 1178 (2011).

    Article  Google Scholar 

  23. M.S. Fuhrer, C.N. Lau, and A.H. MacDonald, MRS Bull. 35, 289 (2010).

    Article  Google Scholar 

  24. S. Agnoli and G. Granozzi, Surf. Sci. 609, 1 (2013).

    Article  Google Scholar 

  25. T. Kuilla, S. Bhadra, D. Yaoa, N.H. Kim, S. Bose, and J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010).

    Article  Google Scholar 

  26. A.K. Geim, Angew. Chem. Int. Ed. 50, 6967 (2011).

    Article  Google Scholar 

  27. N.J.M. Horing, Philos. Trans. R. Soc. A 368, 5525 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Li, Z. Wang, and Z. Shi, Synthesis of Graphene with Arc-Discharge Method, ed. S. Mikhailov (Rijeka: Intech, 2011), pp. 23–36.

    Google Scholar 

  29. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009).

    Article  Google Scholar 

  30. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  31. Q. Tang, Z. Zhou, and Z. Chen, Nanoscale 2013, 4541 (2013).

    Article  Google Scholar 

  32. Q. Peng, A.K. Dearden, J. Crean, L. Han, S. Liu, X. Wen, and S. De, Nanotechnol. Sci. Appl. 2014, 1 (2014).

    Article  Google Scholar 

  33. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Small 7, 1876 (2011).

    Article  Google Scholar 

  34. L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, and J. Huang, Pure Appl. Chem. 83, 95 (2011).

    Google Scholar 

  35. K. Li, G. Eres, J. Howe, Y.J. Chuang, X. Li, Z. Gu, L. Zhang, S. Xie, and Z. Pan, Sci. Rep. 3, 1 (2013).

    MATH  Google Scholar 

  36. K.S. Sivudu and Y. Mahajan, “Mass Production of High Quality Graphene: An Analysis of Worldwide Patents” (Nanotech Insights 2012), Accessed 24 April 2012. http://www.nanowerk.com/spotlight/spotid=25744.php#ixzz34XklrkrR.

  37. S. Park and R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).

    Article  Google Scholar 

  38. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zhang, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).

    Article  Google Scholar 

  39. Y. Li and N. Chopra, JOM 67, 44 (2015).

    Article  Google Scholar 

  40. U. Khan, A. O’neill, H. Porwal, P. May, K. Nawaz, and J.N. Coleman, Carbon 50, 470 (2012).

    Article  Google Scholar 

  41. D. Nuvoli, V. Alzari, R. Sanna, S. Scognamillo, M. Piccinini, L. Peponi, J.M. Kenny, and A. Mariani, Nanoscale Res. Lett. 7, 674 (2012).

    Article  Google Scholar 

  42. A.B. Bourlinos, V. Geogakilas, R. Zboril, T.A. Steriotis, and A.K. Stubos, Small 5, 1841 (2009).

    Article  Google Scholar 

  43. Y. Li and N. Chopra, JOM 67, 34 (2015).

    Article  Google Scholar 

  44. L. Sun and B. Fugetsu, Mater. Lett. 09, 207 (2013).

    Article  Google Scholar 

  45. C. Zhou, S. Chen, J. Lou, J. Wang, Q. Yang, C. Liu, D. Huang, and T. Zhu, Nanoscale Res. Lett. 9, 26 (2014).

    Article  Google Scholar 

  46. M.V. Antisari, R. Marazzi, and R. Krsmanovic, Carbon 41, 2393 (2003).

    Article  Google Scholar 

  47. H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, Y.F. Zhu, D.H. Wu, and X.H. Chen, Chem. Phys. Lett. 366, 664 (2002).

    Article  Google Scholar 

  48. N.G. Shimpi, S. Mishra, D.P. Hansora, and U. Savdekar: Indian Patent, 2013, 3179/MUM/2013, published online. http://ipindia.nic.in/ipr/patent/journal_archieve/journal_2013/pat_arch_102013/official_journal_25102013_part_i.pdf.

  49. M. Cadek, R. Murphy, B. McCarthy, A. Drury, B. Lahr, R.C. Barklie, M. Panhuis, J.N. Coleman, and W.J. Blau, Carbon 40, 923 (2002).

    Article  Google Scholar 

  50. S.R.C. Vivekchand and A. Govindaraj, J. Chem. Sci. 115, 509 (2003).

    Article  Google Scholar 

  51. M. Jahanshahi and A.D. Kiadehi, Fabrication, Purification and Characterization of Carbon Nanotubes: Arc–Discharge in Liquid Media (ADLM), ed. S. Suzuki (Rijeka: Intech, 2013), pp. 55–76.

    Google Scholar 

  52. A. Koshio, M. Yudasaka, M. Zhang, and S. Iijima, Nano Lett. 1, 361 (2001).

    Article  Google Scholar 

  53. J.P. Griffiths: Functionalising Graphene: It’s Got to be Done, So Let’s Do It (Oxford advanced surfaces, 2014), Accessed 10 Oct 2014. http://oxfordsurfaces.com/pdf/onto/Functioonal_Graphene.pdf.

  54. V.K. Rana, M.C. Choi, J.Y. Kong, G.Y. Kim, M.J. Kim, S.H. Kim, S. Mishra, R.P. Singh, and C.S. Ha, Macromol. Mater. Eng. 296, 131 (2011).

    Article  Google Scholar 

  55. V.K. Rana, S. Akhtar, S. Chatterjee, S. Mishra, R.P. Singh, and C.S. Ha, J. Nanosci. Nanotechnol. 14, 2425 (2014).

    Article  Google Scholar 

  56. P. Avouris, Nano Lett. 10, 4285 (2010).

    Article  Google Scholar 

  57. A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  Google Scholar 

  58. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).

    Article  Google Scholar 

  59. M. Pumera, Mater. Today 14, 308 (2011).

    Article  Google Scholar 

  60. J. Berashevich and T. Chakraborty, Eur. Phys. Lett. 93, 6 (2011).

    Article  Google Scholar 

  61. S.W. Cranford and M.J. Buehler, Nanoscale 4, 4587 (2012).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India (Project No.: 02(0023)/11/EMR–II) for providing financial assistance to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mishra.

Appendix A

Appendix A

The high-frequency conductivity for Dirac fermions in graphene has been given by the following expression (Eq. A1).

$$ \left( {\frac{{\pi e^{2} }}{2h}} \right) $$
(A1)

For normal incidence light, optical4 transmittance (T) and reflectance (R) are expressed as

$$ T = \left( {1 + \frac{1}{2\pi a}} \right)^{ - 2} \;{\text{and}}\;R = \left( {\frac{1}{{4\pi^{2} a^{2} T}}} \right) $$
(A2)

where α = (2πe 2/hc) ≈ (1/137), e is the electron charge, c is the light speed, and h is Planck’s constant; the opacity is (1 − T) ≈ (πα) ≈ 2.3%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansora, D.P., Shimpi, N.G. & Mishra, S. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications. JOM 67, 2855–2868 (2015). https://doi.org/10.1007/s11837-015-1522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1522-5

Keywords

Navigation