Skip to main content
Log in

Effect of Ta Solute Concentration on the Microstructural Evolution in Immiscible Cu-Ta Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The immiscible Cu-Ta system has garnered recent interest due to observations of high strength and thermal stability attributed to the formation of Ta-enriched particles. This work investigated a metastable Cu-1 at.% Ta solid solution produced via mechanical alloying followed by subsequent consolidation into a bulk specimen using equal channel angular extrusion at 973 K (700°C). Microstructural characterization revealed a decreased number density of Ta clusters, but with an equivalent particle size compared to a previously studied Cu-10 at.% Ta alloy. Molecular dynamic stimulations were performed to understand the thermal evolution of the Ta clusters. The cluster size distributions generated from the simulations were in good agreement with the experimental microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.J. Detor and C.A. Schuh, Acta Mater. 55, 371 (2007).

    Article  Google Scholar 

  2. A.J. Detor and C.A. Schuh, Acta Mater. 55, 4221 (2007).

    Article  Google Scholar 

  3. A.J. Detor, J.K. Miller, and C.A. Schuh, Philos. Mag. 86, 4459 (2006).

    Article  Google Scholar 

  4. K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood, and C.C. Koch, Scripta Mater. 59, 530 (2008).

    Article  Google Scholar 

  5. K.A. Darling, B.K. VanLeeuwen, C.C. Koch, R.O. Scattergood, Mater. Sci. Eng. A 527, 357 (2010).

    Article  Google Scholar 

  6. K.A. Darling, B.K. VanLeeuwen, J.E. Semones, C.C. Koch, R.O. Scattergood, L.J. Kecskes, and S.N. Mathaudhu, Mater. Sci. Eng. A 528, 4365 (2011).

    Article  Google Scholar 

  7. J.M. Dake and C.E. Krill III, Scripta Mater. 66, 390 (2012).

    Article  Google Scholar 

  8. R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia, Metall. Mater. Trans. A 29, 2469 (1998).

    Article  Google Scholar 

  9. L. Shaw, H. Luo, J. Villegas, and D. Miracle, Acta Mater. 51, 2647 (2003).

    Article  Google Scholar 

  10. A.M. El-Sherik, D. Boylan, U. Erb, G. Palumbo, and K.T. Aust, Mater. Trans. A 238, 727 (1992).

    Google Scholar 

  11. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust, Scripta Metall. Mater. 25, 2711 (1991).

    Article  Google Scholar 

  12. A. Michels, C.E. Krill, H. Eharhardt, R. Birringer, and D.T. Wu, Acta Mater. 47, 2143 (1999).

    Article  Google Scholar 

  13. P. Knauth, A. Charai, and P. Gas, Scripta Metall. Mater. 28, 325 (1993).

    Article  Google Scholar 

  14. C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones, J. Mater. Sci. 43, 7264 (2008).

    Article  Google Scholar 

  15. K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu, Comp. Mater. Sci. 84, 255 (2014).

    Article  Google Scholar 

  16. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).

    Article  Google Scholar 

  17. M. Saber, H. Kotan, C.C. Koch, and R.O. Scattergood, J. Appl. Phys. 113, 063515 (2013).

    Article  Google Scholar 

  18. Z. Chen, F. Liu, H.F. Wang, W. Yang, G.C. Yang, and Y.H. Zhou, Acta Mater. 57, 1466 (2009).

    Article  Google Scholar 

  19. J. Li, J. Wang, and G. Yang, Scripta Mater. 60, 945 (2009).

    Article  Google Scholar 

  20. H.A. Murdoch and C.A. Schuh, Acta Mater. 61, 2121 (2013).

    Article  Google Scholar 

  21. C.C. Koch, R.O. Scattergood, M. Saber, and H. Kotan, J. Mater. Res. 28, 1785 (2013).

    Article  Google Scholar 

  22. K.A. Darling, E.L. Huskins, B.E. Schuster, Q. Wei, and L.J. Kecskes, Mat. Sci. Eng. A. 638, 322 (2015).

    Article  Google Scholar 

  23. T. Frolov, K.A. Darling, L.J. Kecskes, and Y. Mishin, Acta Mater. 60, 2158 (2012).

    Article  Google Scholar 

  24. K.A. Darling, M.A. Tschopp, R.K. Guduru, W.H. Yin, Q. Wei, and L.J. Kecskes, Acta Mater. 76, 168 (2014).

    Article  Google Scholar 

  25. K.A. Darling, A.J. Roberts, Y. Mishin, S.N. Mathaudhu, and L.J. Kecskes, J. Alloys Compd. 573, 142 (2013).

    Article  Google Scholar 

  26. T. Rojhirunsakool, K.A. Darling, M.A. Tschopp, G.P. Purja Pun, Y. Mishin, R. Banerjee, and L.J. Kecskes. MRS Commun. 5, 333 (2015).

    Article  Google Scholar 

  27. C.M. Müller, S. Parviainen, F. Djurabekova, K. Nordlund, and R. Spolenak, Acta Mater. 82, 51 (2015).

    Article  Google Scholar 

  28. C.M. Müller, A.S. Sologubenko, S.S.A. Gerstl, and R. Spolenak, Acta Mater. 89, 181 (2015).

    Article  Google Scholar 

  29. G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin, Acta Mater. 100, 377 (2015).

    Article  Google Scholar 

  30. V.M. Segal, Mater. Sci. Eng. A 197, 157 (1995).

    Article  Google Scholar 

  31. M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, and J. Mater, Sci. 36, 2835 (2001).

    Google Scholar 

  32. V.M. Segal, Mater. Sci. Eng. A 271, 322 (1999).

    Article  Google Scholar 

  33. R.Z. Valiev and T.G. Langdon, Prog. Mater Sci. 51, 881 (2006).

    Article  Google Scholar 

  34. Y.T. Zhu and T.C. Lowe, Mater. Sci. Eng. A 291, 46 (2000).

    Article  Google Scholar 

  35. M.K. Miller, Atom Probe Tomography (New York: Kluwer Academic/Plenum Publishers, 2000). ISBN-13: 9780306464157; ISBN-10: 0306464152.

  36. M.K. Miller and E.A. Kenik, Microsc. Microanal. 10, 336 (2004).

    Article  Google Scholar 

  37. R.P. Kolli and D.N. Seidman, Microsc. Microanal. 13, 272 (2007).

    Article  Google Scholar 

  38. F. Vurpillot, A. Bostel, and D. Blavette, Appl. Phys. Lett. 76, 3127 (2000).

    Article  Google Scholar 

  39. F. Vurpillot, A. Cerezo, D. Blavette, and D.J. Larson, Microsc. Microanal. 10, 384 (2004).

    Article  Google Scholar 

  40. B. Gault, F. De Geuser, L. Bourgeois, B.M. Gabble, S.P. Ringer, and B.C. Muddle, Ultramicroscopy 111, 683 (2011).

    Article  Google Scholar 

  41. X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. Ping, and K. Hono, Acta Mater. 49, 389 (2001).

    Article  Google Scholar 

  42. A. Stukowski, Model Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Google Scholar 

Download references

Acknowledgements

M. Rajagopalan and K. N. Solanki are grateful for the financial support for this work from the Army Research Laboratory award number W911NF-15-2-0038 and would also like to thank the LeRoy Eyring Center for Solid State Science at Arizona State University. G. P. Purja Pun and Y. Mishin were supported by the U.S. Army Research Office under contract number W911NF-15-1-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Hornbuckle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hornbuckle, B.C., Rojhirunsakool, T., Rajagopalan, M. et al. Effect of Ta Solute Concentration on the Microstructural Evolution in Immiscible Cu-Ta Alloys. JOM 67, 2802–2809 (2015). https://doi.org/10.1007/s11837-015-1643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1643-x

Keywords

Navigation