Skip to main content
Log in

Effect of Specimen Thickness on Microstructural Changes During Oxidation of the NiCrW Alloy 230 at 950–1050°C

  • Published:
JOM Aims and scope Submit manuscript

Abstract

An accurate procedure for predicting oxidation-induced damage and lifetime limits is crucial for the reliable operation of high-temperature metallic components in practical applications. In order to develop a predictive oxidation lifetime model for Ni–Cr alloys, specimens of wrought NiCrW alloy 230 with different thicknesses were cyclically oxidized in air at 950–1050°C for up to 3000 h. After prolonged exposure, two types of carbides as well as a Cr-rich nitride (π-phase) precipitated in the γ-Ni matrix. The oxidation-induced loss of Cr from the alloy resulted in the formation of subscale zones, which were free of the Cr-rich carbide and nitride but also of the Ni-W rich M6C. The width of the M6C-free zone was smaller than that free of the Cr-rich precipitates. Thermodynamic and diffusion calculations of the observed time- and temperature-dependent Cr depletion processes identified that back diffusion of C occurred which resulted in an increased volume fraction of M23C6 in the specimen core. With increasing time and temperature, the amount of π-phase in the specimen core increased. The subscale depletion of the initially present Cr-nitrides and the formation of Cr-nitrides in the specimen center is believed to be related to a mechanism which is qualitatively similar to that described for the Cr carbide enrichment. However, with increasing time and decreasing specimen thickness, N uptake from the atmosphere becomes apparent. As a result, the precipitates present in the specimen center eventually consisted almost exclusively of nitrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.J. Young, High Temperature Oxidation and Corrosion of Metals (Oxford: Elsevier, 2008), p. 196.

    Google Scholar 

  2. A.V. Dean and P.J. Ennis, Nucl. Technol. 66, 117 (1984).

    Google Scholar 

  3. W.R. Johnson, L.D. Thompson, and T.A. Lechtenberg, Nucl. Technol. 66, 88–101 (1984).

    Google Scholar 

  4. R.H. Cook, Nucl. Technol. 66, 283 (1984).

    Google Scholar 

  5. H.M. Tawancy, J. Mater. Sci. 27, 6481 (1992).

    Article  Google Scholar 

  6. D.L. Klarstrom and G.Y. Lai, Proceedings 6th International Symposium on Superalloys (Seven Springs, PA, Sept. 18–22, 1988).

  7. P.J. Ennis, W.J. Quadakkers, and H. Schuster, Mater. Sci. Technol. 8, 78 (1992).

    Article  Google Scholar 

  8. U. Bruch, D. Schuhmacher, P.J. Ennis, and E. te Heesen, Nucl. Technol. 66, 357 (1984).

    Google Scholar 

  9. N. Birks, G.H. Meier, and F.S. Petit, Introduction to the High-Temperature Oxidation of Metals (Cambridge: Cambridge University Press, 2006), p. 101.

    Book  Google Scholar 

  10. R. Bauer, M. Baccalaro, L.P.H. Jeurgens, M. Pohl, and E.J. Mittemeijer, Oxid. Met. 69, 265 (2008).

    Article  Google Scholar 

  11. H.E. Evans and A.T. Donaldson, Oxid. Met. 50, 457 (1998).

    Article  Google Scholar 

  12. D.P. Whittle, D.J. Evans, D.B. Scully, and G.C. Wood, Acta Metall. 15, 1421 (1967).

    Article  Google Scholar 

  13. H. Ackermann, G. Teneva-Kosseva, H. Koehne, K. Lucka, S. Richter, and J. Mayer, Mater. Corros. 59, 380 (2008).

    Article  Google Scholar 

  14. U. Brill, Metallurgy 46, 778 (1992).

    Google Scholar 

  15. U. Brill and J. Klöwer, Metallurgy 51, 263 (1997).

    Google Scholar 

  16. R. Pillai, H. Ackermann, H. Hattendorf, and S. Richter, Corros. Sci. 75, 28 (2013).

    Article  Google Scholar 

  17. R. Pillai, H. Ackermann, and K. Lucka, Corros. Sci. 69, 181 (2013).

    Article  Google Scholar 

  18. R.N. Durham, B. Gleeson, and D.J. Young, Oxid. Met. 50, 139 (1998).

    Article  Google Scholar 

  19. P.J. Maziasz, B.A. Pint, J.P. Shingledecker, N.D. Evans, Y. Yamamoto, K.L. More, and E. Lara-Curzio, Int. J. Hydrogen Energy 32, 3622 (2007).

    Article  Google Scholar 

  20. R. Duan, A. Jalowicka, P. Huczkowski, B. Pint and W.J. Quadakkers, Forschungszentrum Juelich GmbH, unpublished research (2015).

  21. B.A. Pint, P.T. Tortorelli, and I.G. Wright, Oxid. Met. 58, 73 (2002).

    Article  Google Scholar 

  22. W.J. Quadakkers, A. Elschner, W. Speier, and H. Nickel, Appl. Surf. Sci. 52, 271 (1991).

    Article  Google Scholar 

  23. A. Chyrkin, R. Pillai, H. Ackermann, H. Hattendorf, S. Richter, W. Nowak, D. Grüner, and W.J. Quadakkers, Corros. Sci. 96, 32 (2015).

    Article  Google Scholar 

  24. “High Temperature Tech Brief” Haynes International, 2009, http://www.haynesintl.com/pdf/h3060.pdf. Accessed 16 July 2015.

  25. B.D. Bastow, D.P. Whittle, and G.C. Wood, Oxid. Met. 12, 413–438 (1978).

    Article  Google Scholar 

  26. D. Klarstrom, Corrosion, 407/1-407/12 (1994).

  27. L. Jiang, R. Hu, H. Kou, J. Li, G. Bai, and H. Fu, Mater. Sci. Eng. A 536, 37 (2012).

    Article  Google Scholar 

  28. P. Subramanya Herle, M.S. Hegde, K. Sooryanarayana, T.N. Guru Row, and G.N. Subbanna, J. Mater. Chem. 8, 1435 (1998).

    Article  Google Scholar 

  29. V. Gavriljuk and H. Berns, High Nitrogen Steels, Structure, Properties, Manufacture, Applications (Berlin: Springer, 1999).

    Book  Google Scholar 

  30. C.S. Giggins and F.S. Pettit, J. Electrochem. Soc. 118, 1782 (1971).

    Article  Google Scholar 

  31. C.S. Tedmon, J. Electrochem. Soc. 113, 766 (1966).

    Article  Google Scholar 

  32. H.C. Graham and H.H. Davis, J. Am. Ceram. Soc. 54, 89 (1971).

    Article  Google Scholar 

  33. D. Young and B. Pint, Oxid. Met. 66, 137 (2006).

    Article  Google Scholar 

  34. M. Michalik, M. Hänsel, J. Zurek, L. Singheiser, and W.J. Quadakkers, Mater. High Temp. 22, 213 (2005).

    Article  Google Scholar 

  35. D. Kim, C. Jang, and W.S. Ryu, Oxid. Met. 71, 271 (2009).

    Article  Google Scholar 

  36. W.J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Mater. High Temp. 20, 115 (2003).

    Google Scholar 

  37. “MNX - MEMS and Nanotechnology Exchange” https://www.memsnet.org/material/chromiumoxidecr2o3bulk/?keywords=chromium%20oxide. Accessed 08 July 2015.

  38. H. Evans, Int. Mater. Rev. 40, 1 (1995).

    Article  Google Scholar 

  39. W.J. Quadakkers, P. Huczkowski, D. Naumenko, J. Zurek, G.H. Meier, L. Niewolak, and L. Singheiser, Mater. Sci. Forum 595–598, 1111 (2008).

    Article  Google Scholar 

  40. J. Zurek, G.H. Meier, E. Essuman, M. Hänsel, L. Singheiser, and W.J. Quadakkers, J. Alloys Compd. 467, 450 (2009).

    Article  Google Scholar 

  41. W.J. Quadakkers and L. Singheiser, Mater. Sci. Forum 369, 77 (2001).

    Article  Google Scholar 

  42. S. Osgerby, K. Berriche-Bouhanek, and H.E. Evans, Mater. Sci. Eng. A 412, 182 (2005).

    Article  Google Scholar 

  43. A. Baldan, J. Mater. Sci. 37, 2171–2202 (2002).

    Article  Google Scholar 

  44. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W.J. Quadakkers, Oxid. Met. 75, 143 (2010).

    Article  Google Scholar 

  45. K. Ledjeff, A. Rahmel, and M. Schorr, Werkst. Korros. 30, 767 (1979).

    Article  Google Scholar 

  46. P. Berthod, C. Vebert, L. Aranda, R. Podor, and C. Rapin, Oxid. Met. 63, 57 (2005).

    Article  Google Scholar 

  47. R. Petkovic-Luton and T.A. Ramanarayanan, Oxid. Met. 34, 381 (1990).

    Article  Google Scholar 

  48. W.J. Quadakkers, Mat. Sci. Eng. 87, 107 (1987).

    Article  Google Scholar 

  49. “MNX - MEMS and Nanotechnology Exchange” http://www.memsnet.org/material/nickelnibulk/?keywords=nickel. Accessed 08 July 2015.

  50. P. Villars, “Material Phases Data System (MPDS)” (Springer-Verlag GmbH, Heidelberg, 2014) http://materials.springer.com/isp/crystallographic/docs/sd_0540673. Accessed 09 July 2015.

  51. P. Villars, “Material Phases Data System (MPDS)” (Springer-Verlag GmbH, Heidelberg, 2014) http://materials.springer.com/isp/crystallographic/docs/sd_1008647.Accessed 09 07 2015.

Download references

Acknowledgements

The authors would like to acknowledge Dr. K. Ohla from Haynes International for supplying the material. The authors would also like to acknowledge the Bundesministerium für Bildung und Forschung (BMBF) for funding part of this work under Grant No. 03EK3032. Assistance with ICP-OES analysis provided by H. Lippert and V. Nischwitz from the Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich GmbH is greatly appreciated. The authors are grateful to the following colleagues in the Institute of Energy and Climate Research of the Forschungszentrum Jülich GmbH IEK-2 for assistance in the experimental work: R. Mahnke, H. Cosler, and A. Kick for the oxidation experiments, V. Gutzeit and J. Bartsch for metallographic studies, Dr. E. Wessel for EBSD investigations and Dr. Nowak for GDOES analyses. At ORNL, G. Garner, T. Lowe and T. Jordan assisted with the experimental work and the research was sponsored by the U.S. Department of Energy, U.S. Assistant Secretary for Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (Combined Heat and Power Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jalowicka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalowicka, A., Duan, R., Huczkowski, P. et al. Effect of Specimen Thickness on Microstructural Changes During Oxidation of the NiCrW Alloy 230 at 950–1050°C. JOM 67, 2573–2588 (2015). https://doi.org/10.1007/s11837-015-1645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1645-8

Keywords

Navigation