Skip to main content
Log in

Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electron beam melting (EBM) is one of the subsets of direct metal additive manufacturing (AM), an emerging manufacturing method that fabricates metallic parts directly from a three-dimensional (3D) computer model by the successive melting of powder layers. This family of technologies has seen significant growth in recent years due to its potential to manufacture complex components with shorter lead times, reduced material waste and minimal post-processing as a “near-net-shape” process, making it of particular interest to the biomedical and aerospace industries. The popular titanium alloy Ti-6Al-4V has been the focus of multiple studies due to its importance to these two industries, which can be attributed to its high strength to weight ratio and corrosion resistance. While previous research has found that most tensile properties of EBM Ti-6Al-4V meet or exceed conventional manufacturing standards, fatigue properties have been consistently inferior due to a significant presence of porosity. Studies have shown that adjusting processing parameters can reduce overall porosity; however, they frequently utilize methods that give insufficient information to properly characterize the porosity (e.g., Archimedes’ method). A more detailed examination of the result of process parameter adjustments on the size and spatial distribution of gas porosity was performed utilizing synchrotron-based x-ray microtomography with a minimum feature resolution of 1.5 µm. Cross-sectional melt pool area was varied systematically via process mapping. Increasing melt pool area through the speed function variable was observed to significantly reduce porosity in the part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  2. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, J. Mater. Sci. Technol. 28, 1 (2012).

    Article  Google Scholar 

  3. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Mater. Charact. 60, 96 (2009).

    Article  Google Scholar 

  4. C. Qiu, N.J.E. Adkins, and M.M. Attallah, Mater. Sci. Eng., A 578, 230 (2013).

    Article  Google Scholar 

  5. P. Edwards, A. O’Conner, and M. Ramulu, J. Manuf. Sci. Eng. 135, 061016 (2013).

    Article  Google Scholar 

  6. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, Metall. Mater. Trans. A 41, 3422 (2010).

    Article  Google Scholar 

  7. K.S. Chan, M. Koike, R.L. Mason, and T. Okabe, Metall. Metal. Trans. A 44, 1010 (2013).

    Article  Google Scholar 

  8. L. Facchini, E. Magalini, P. Robotti, and A. Molinari, Rap. Prototyp. J. 15, 171 (2009).

    Article  Google Scholar 

  9. S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, and P.B. Prangnell, Mater. Charact. 102, 47 (2015).

    Article  Google Scholar 

  10. P.E. Magnusen, R.J. Bucci, A.J. Hinkle, J.R. Brockenbrough, and H.J. Konish, Int. J. Fatigue 19, 275 (1997).

    Article  Google Scholar 

  11. A. Safdar, L.Y. Wei, A. Snis, and Z. Lai, Mater. Charact. 65, 8 (2012).

    Article  Google Scholar 

  12. R. Gerling, R. Leitgeb, and F.P. Schimansky, Mater. Sci. Eng., A 252, 239 (1998).

    Article  Google Scholar 

  13. R.S. Vitt and K. Ono, Metall. Trans. 2, 608 (1971).

    Article  Google Scholar 

  14. E. Hernández-Nava, C.J. Smith, F. Derguti, S. Tammas-Williams, F. Léonard, P.J. Withers, I. Todd, and R. Goodall, Acta Mater. 85, 387 (2015).

    Article  Google Scholar 

  15. H. Gong, K. Rafi, G. Hengfeng, T. Starr, and B. Stucker, Addit. Manuf. 1, 87 (2014).

    Article  Google Scholar 

  16. F. Léonard, S. Tammas-Williams, P.B. Prangnell, I. Todd, and P.J. Withers, Conference on Industrial Computed Tomography (ICT) (2012).

  17. G. Ziółkowski, E. Chlebus, P. Szymczyk, and J. Kurzac, Arch. Civ. Mech. Eng. 14, 608 (2014).

    Article  Google Scholar 

  18. L. De Chiffre, S. Carmignato, J.P. Kruth, R. Schmitt, and A. Weckenmann, CIRP Ann. Manuf. Technol. 63, 655 (2014).

    Article  Google Scholar 

  19. R. Bernhardt, D. Scharnweber, B. Müller, P. Thurner, H. Schliephake, P. Wyss, F. Beckmann, J. Goebbels, and H. Worch, Eur. Cell. Mater. 7, 42 (2004).

    Article  Google Scholar 

  20. D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, J. Synch. Rad. 21, 1188 (2014).

    Article  Google Scholar 

  21. J. Beuth and N. Klingbeil, JOM 53, 36 (2001).

    Article  Google Scholar 

  22. J. Fox, Transient Melt Pool Response in Additive Manufacturing of Ti-6Al-4V (Pittsburgh: Carnegie Mellon University, 2015).

    Google Scholar 

  23. S.P. Narra, R. Cunningham, D. Christiansen, J. Beuth, and A.D. Rollett, Proceedings of Solid Freeform Fabrication Symposium (2015).

  24. A.A. Antonysamy, Microstructure, Texture and Mechanical Property Evolution During Additive Manufacturing of Ti6Al4V Alloy for Aerospace Applications (Manchester: University of Manchester, 2012).

    Google Scholar 

  25. G.K.L. Ng, A.E.W. Jarfors, G. Bi, and H.Y. Zheng, Appl. Phys. A 97, 641 (2009).

    Article  Google Scholar 

  26. X. Zhiqiang, W. Wen, and T. Zhai, Metall. Trans. A 43, 2763 (2012).

    Article  Google Scholar 

  27. V. Juechter, T. Scharowsky, R.F. Singer, and C. Körner, Acta Mater. 76, 252 (2014).

    Article  Google Scholar 

  28. H. Fukuda, H. Takahashi, K. Kuramoto, and T. Nakano, Mater. Sci. Forum 706, 488 (2012).

    Article  Google Scholar 

  29. J. Gockel, Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, 2014.

Download references

Acknowledgements

The authors acknowledge America Makes for providing funding for this research under the project entitled “A Database Relating Powder Properties to Process Outcomes for Direct Metal AM,” Award Number FA8650-12-2-7230, and the National Science Foundation for providing funding under Grant CMMI-1335298. They would also like to thank Dr. Xianghui Xiao and the rest of the 2-BM beamline staff at the Advanced Photon Source for assisting in the acquisition of the synchrotron tomography data, and North Carolina State and Dr. Ron Aman for assisting with the sample fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Cunningham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunningham, R., Narra, S.P., Ozturk, T. et al. Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography. JOM 68, 765–771 (2016). https://doi.org/10.1007/s11837-015-1802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1802-0

Navigation