Skip to main content
Log in

Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

During the electron beam melting (EBM) process, builds occur at temperatures in excess of 800°C for nickel-base superalloys such as Inconel 718. When coupled with the temporal differences between the start and end of a build, a top-to-bottom microstructure gradient forms. Characterized in this study is a microstructure gradient and associated tensile property gradient common to all EBM Inconel 718 builds, the extent of which is dependent on build geometry and the specifics of a build’s processing history. From the characteristic microstructure elements observed in EBM Inconel 718 material, the microstructure gradient can be classified into three distinct regions. Region 1 (top of a build) is comprised of a cored dendritic structure that includes carbides and Laves phase within the interdendritic regions. Region 2 is an intermediate transition zone characterized by a diffuse dendritic structure, dissolution of the Laves phase, and precipitation of \(\delta \) needle networks within the interdendritic regions. The bulk structure (Region 3) is comprised of a columnar grain structure lacking dendritic characteristics with \(\delta \) networks having precipitated within the grain interiors. Mechanically, at both 20°C and 650°C, the yield strength, ultimate tensile strength, and elongation at failure exhibit the general trend of increasing with increasing build height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.J. Wagner, and A.M. Hal, Tech. Rep. (Battelle Memorial Institue, Columbus, 1965)

  2. C. Sims, The Superalloys (Wiley, New York, 1972)

    Google Scholar 

  3. J.F. Radavich, in Superalloy 718: Metallurgy and Applications, ed. by E. Loria (Minerals, Metals & Materials Society, USA, 1989), pp. 229–240

    Google Scholar 

  4. I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2010)

    Book  Google Scholar 

  5. H.E. Helmer, C. Körner, and R.F. Singer, J. Mater. Res. 29, 1987 (2014)

    Article  Google Scholar 

  6. W. Sames, K. Unocic, R. Dehoff, T. Lolla, and S. Babu, J. Mater. Res. 29, 1920 (2014)

    Article  Google Scholar 

  7. Y. Tian, D. McAllister, H. Colijn, M. Mills, D. Farson, M. Nordin, and S. Babu, Metall. Mater. Trans. A 45, 4470 (2014)

    Article  Google Scholar 

  8. K. Unocic, L. Kolbus, R. Dehoff, S. Dryepondt, and B. Pint, Corrosion (NACE International, USA, 2014)

    Google Scholar 

  9. K. Amato, S. Gaytan, L. Murr, E. Martinez, P. Shindo, J. Hernandez, S. Collins, and F. Medina, Acta Mater. 60, 2229 (2012)

    Article  Google Scholar 

  10. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, J. Alloys Compd. 513, 518 (2012)

    Article  Google Scholar 

  11. A. Strondl, R. Fischer, G. Frommeyer, and A. Schneider, Mater. Sci. Eng. A 480, 138 (2008)

    Article  Google Scholar 

  12. L. Carter, M. Attallah, and R. Reed, in Superalloys 2012, ed. by E. Huron, R. Reed, M. Hardy, M. Mills, R. Montero, P. Portella, and J. Telesman (Wiley, New York, 2012), p. 577

    Chapter  Google Scholar 

  13. L. Murr, E. Martinez, X. Pan, S. Gaytan, J. Castro, C. Terrazas, F. Medina, R. Wicker, and D. Abbott, Acta Mater. 61, 4289 (2013)

    Article  Google Scholar 

  14. L. Murr, E. Martinez, S. Gaytan, D. Ramirez, B. Machado, P. Shindo, J. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, and R. Wicker, Metall. Mater. Trans. A 42, 3491 (2011)

    Article  Google Scholar 

  15. ASTM E08–13a, Standard Test Methods for Tension Testing of Metallic Mater. Tech. Rep. (ASTM International, 2013)

  16. ASTM E21–09, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Mater. Tech. Rep. (ASTM International, 2009)

  17. R.G. Thompson, and S. Genculc, Weld. Res. Supp. 337, (1983)

  18. R. Thompson, JOM 40, 44 (1988)

    Article  Google Scholar 

  19. S. David, S. Babu, and J. Vitek, JOM 55, 14 (2003)

    Article  Google Scholar 

  20. S. Babu, M. Miller, J. Vitek, and S. David, Acta Mater. 49, 4149 (2001)

    Article  Google Scholar 

  21. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz, Acta Mater. 49, 1051 (2001)

    Article  Google Scholar 

  22. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984)

    Article  Google Scholar 

  23. J. Tien, and T. Caulfield, Superalloys, Supercomposites, and Superceramics (Academic, New York, 1989)

    Google Scholar 

  24. Y. Zhang, Z. Li, P. Nie, and Y. Wu, Metall. Mater. Trans. A 44, 5513 (2013)

    Article  Google Scholar 

  25. W. Kurz, B. Giovanola, and R. Trivedi, Acta Metall. 34, 823 (1986)

    Article  Google Scholar 

  26. A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J. Guédou, J. Uginet, and P. Héritier, Mater. Sci. Eng. A 486, 117 (2008)

    Article  Google Scholar 

  27. G. Bouse, in Superalloys 718, 625 and Various Derivatives, 1989, ed. by E. Loria, p. 69

  28. J. Schirra, R. Caless, and R. Hatala, in Superalloys 718, 625 and Various Derivatives, 1989, ed. by E. Loria, p. 375

  29. G. Sjoberg, N. Ingesten, and R. Carlson, in Superalloys 718, 625 and Various Derivatives, 1989, ed. by E. Loria, p. 603

  30. X. Liang, R. Zhang, Y. Yang, and Y. Han, in Superalloys 718, 625, 706 and Various Derivatives, 1994, ed. by E. Loria, p. 947

  31. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Mater. Trans. A 19, 453 (1988)

    Article  Google Scholar 

  32. J.M. Oblak, D.F. Paulonis, and D.S. Duvall, Metall. Mater. Trans. 5, 143 (1974)

    Google Scholar 

  33. M. Sundararaman, and P. Mukhopadhyay, Mater. Char. 31, 191 (1993)

    Article  Google Scholar 

  34. D.A. Korzekwa, Int. J. Cast Metals Res. 22, 187 (2009)

    Article  Google Scholar 

  35. W. Cao, R. Kennedy, and M. Willis. in Superalloys 718, 625 and Various Derivatives, 1991, ed. by E. Loria, p. 147

  36. G.A. Rao, M. Srinivas, and D. Sarma, Mater. Sci. Technol. 20, 1161 (2004)

    Article  Google Scholar 

  37. H. Zhang, S. Zhang, M. Cheng, and Z. Li, Mater. Char. 61, 49 (2010)

    Article  Google Scholar 

  38. S. Azadian, L.-Y. Wei, and R. Warren, Mater. Char. 53, 7 (2004)

    Article  Google Scholar 

  39. S. Wlodek, and D. Field, in Superalloys 718, 625, 706 and Various Derivatives, 1994, ed. by E. Loria, p. 659

  40. M.C. Chaturvedi, and Y.-F. Han, Metal Sci. 17, 145 (1983)

    Article  Google Scholar 

  41. A. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, New York, 2007), pp. 113–144

    Book  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This research was performed, in part, using instrumentation provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kirka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirka, M.M., Unocic, K.A., Raghavan, N. et al. Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties. JOM 68, 1012–1020 (2016). https://doi.org/10.1007/s11837-016-1812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1812-6

Navigation