Skip to main content
Log in

High Temperature In Situ Compression of Thermoplastically Formed Nano-scale Metallic Glass

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical behavior of nano-scale metallic glasses was investigated by in situ compression tests in a scanning electron microscope. Platinum-based metallic glass nano-pillars were fabricated by thermoplastic forming. The nano-pillars and corresponding bulk substrate were tested in compression over the range of room temperature to glass transition. Stress–strain curves of the nano-pillars were obtained along with in situ observation of their deformation behavior. The bulk substrate as well as nano-pillars showed an increase in elastic modulus with temperature which is explained by diffusive rearrangement of atomic-scale viscoelastic units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Schroers, Adv. Mater. 22, 1566 (2010).

    Article  Google Scholar 

  2. G. Kumar, H.X. Tang, and J. Schroers, Nature 457, 868 (2009).

    Article  Google Scholar 

  3. M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, and A.D. Taylor, ACS Nano 5, 2979 (2011).

    Article  Google Scholar 

  4. S. Mukherjee, R.C. Sekol, M. Carmo, E.I. Altman, A.D. Taylor, and J. Schroers, Adv. Funct. Mater. 23, 2708 (2013).

    Article  Google Scholar 

  5. J. Padmanabhan, E.R. Kinser, M.A. Stalter, C. Duncan-Lewis, J.L. Balestrini, A.J. Sawyer, J. Schroers, and T.R. Kyriakides, ACS Nano 8, 4366 (2014).

    Article  Google Scholar 

  6. D. Jang and J.R. Greer, Nat. Mater. 9, 215 (2014).

    Google Scholar 

  7. L. Tian, Y. Cheng, Z. Shan, J. Li, C. Wang, X. Han, J. Sun, and E. Ma, Nat. Commun. 3, 609 (2012).

    Article  Google Scholar 

  8. P. Murali and U. Ramamurty, Acta Mater. 53, 1467 (2005).

    Article  Google Scholar 

  9. A. Slipenyuk and J. Eckert, Scr. Mater. 50, 39 (2004).

    Article  Google Scholar 

  10. B.B. Medeiros, M.M. Medeiros, J. Fornell, J. Sort, M.D. Baró, and A.M. Jorge, J. Non Cryst. Solids 2, 103 (2015).

    Article  Google Scholar 

  11. D. Magagnosc, R. Ehrbar, G. Kumar, M. He, J. Schroers, and D. Gianola, Sci. Rep. 3, 1 (2013).

    Article  Google Scholar 

  12. D. Chen, D. Jang, K. Guan, Q. An, W. Goddard III, and J. Greer, Nano Lett. 13, 4462 (2013).

    Article  Google Scholar 

  13. W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  Google Scholar 

  14. C.A. Schuh, A.C. Lund, and T. Nieh, Acta Mater. 52, 5879 (2004).

    Article  Google Scholar 

  15. H.S. Arora, A.V. Aditya, and S. Mukherjee, J. Appl. Phys. 117, 014902 (2015).

    Article  Google Scholar 

  16. J. Lu, G. Ravichandran, and W.L. Johnson, Acta Mater. 51, 3429 (2003).

    Article  Google Scholar 

  17. P. Wesseling, T. Nieh, W. Wang, and J. Lewandowski, Scr. Mater. 51, 151 (2004).

    Article  Google Scholar 

  18. A. Argon and L.T. Shi, Acta Metall. 31, 499 (2004).

    Article  Google Scholar 

  19. B. Schuster, Q. Wei, T. Hufnagel, and K. Ramesh, Acta Mater. 56, 5091 (2008).

    Article  Google Scholar 

  20. O.V. Kuzmin, Y.T. Pei, C.Q. Chen, and J.T.M. De Hosson, Acta Mater. 60, 889 (2012).

    Article  Google Scholar 

  21. Z. Wu, Y. Zhang, M.H. Jhon, H. Gao, and D.J. Srolovitz, Nano Lett. 12, 910 (2012).

    Article  Google Scholar 

  22. B.D. Beake and J.F. Smith, Philos. Magn. A 82, 2179 (2002).

    Article  Google Scholar 

  23. J. Ye, J. Lu, C. Liu, Q. Wang, and Y. Yang, Nat. Mater. 9, 619 (2010).

    Article  Google Scholar 

  24. A. Slipenyuk and J. Eckert, Scr. Mater. 50, 39 (2004).

    Article  Google Scholar 

  25. A. Van den Beukel and J. Sietsma, Acta Metall. Mater. 38, 383 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundeep Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mridha, S., Arora, H.S., Lefebvre, J. et al. High Temperature In Situ Compression of Thermoplastically Formed Nano-scale Metallic Glass. JOM 69, 39–44 (2017). https://doi.org/10.1007/s11837-016-1961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1961-7

Keywords

Navigation