Skip to main content
Log in

Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces (\( 0\bar{1}1 \)) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.T.M. De Hosson, W.A. Soer, A.M. Minor, Z. Shan, E.A. Stach, and S.A. Asif, J. Mater. Sci. 41, 7704 (2006).

    Article  Google Scholar 

  2. A.M. Minor, S.A. Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren, Nat. Mater. 5, 697 (2006).

    Article  Google Scholar 

  3. B.N. Jaya and V. Jayaram, JOM 68, 94 (2016).

    Article  Google Scholar 

  4. I. DeWolf, Semicond. Sci. Technol. 11, 139 (1996).

    Article  Google Scholar 

  5. D.E. Diaz-Droguett, R. El Far, V.M. Fuenzalida, and A.L. Cabrera, Mater. Chem. Phys. 134, 631 (2012).

    Article  Google Scholar 

  6. T.W. Scharf and I.L. Singer, Tribol. Lett. 14, 3 (2003).

    Article  Google Scholar 

  7. V.V. Poborchii, A.V. Kolobov, and K. Tanaka, Appl. Phys. Lett. 72, 1167 (1998).

    Article  Google Scholar 

  8. F.I. Allen, E. Kim, N.C. Andresen, C.P. Grigoropoulos, and A.M. Minor, Ultramicroscopy (2016). doi:10.1016/j.ultramic.2016.06.011.

    Google Scholar 

  9. Y.B. Gerbig, C.A. Michaels, A.M. Forster, J.W. Hettenhouser, and W.E. Byrd, Rev. Sci. Instrum. 83, 125106 (2012).

    Article  Google Scholar 

  10. Y.B. Gerbig, S.J. Stranick, and R.F. Cook, Phys. Rev. B Condens. Matter Mater. Phys. 83, 1 (2011).

  11. Y.B. Gerbig, C.A. Michaels, A.M. Forster, and R.F. Cook, Phys. Rev. B - Condens. Matter Mater. Phys. 85, 104102 (2012).

  12. S. Varughese, M.S.R.N. Kiran, U. Ramamurty, and G.R. Desiraju, Angew. Chem. Int. Ed. Engl. 52, 2701 (2013).

    Article  Google Scholar 

  13. U. Ramamurty and J. Jang, Cryst. Eng. Comm. 16, 12 (2014).

    Article  Google Scholar 

  14. S. Chattoraj, L. Shi, M. Chen, A. Alhalaweh, S. Velaga, and C.C. Sun, Cryst. Growth Des. 14, 3864 (2014).

    Article  Google Scholar 

  15. M.K. Mishra, S. Varughese, U. Ramamurty, and G.R. Desiraju, J. Am. Chem. Soc. 135, 8121 (2013).

    Article  Google Scholar 

  16. M.K. Mishra, U. Ramamurty, and G.R. Desiraju, Curr. Opin. Solid State Mater. Sci. (2016). doi:10.1016/j.cossms.2016.05.011.

    Google Scholar 

  17. D. Olusanmi, K.J. Roberts, M. Ghadiri, and Y. Ding, Int. J. Pharm. 411, 49 (2011).

    Article  Google Scholar 

  18. N.S. Trasi, and S.R. Byrn, AAPS Pharm. Sci. Tech. 13, 772 (2012).

    Article  Google Scholar 

  19. K. Naelapää, J.P. Boetker, P. Veski, J. Rantanen, T. Rades, and K. Kogermann, Int. J. Pharm. 429, 69 (2012).

    Article  Google Scholar 

  20. W. Fortunato de Carvalho Rocha, G.P. Sabin, P.H. Marco, and R.J. Poppi, Chemom. Intell. Lab. Syst. 106, 198 (2011).

    Article  Google Scholar 

  21. M.S.R.N. Kiran, S. Varughese, C.M. Reddy, U. Ramamurty, and G.R. Desiraju, Cryst. Growth Des. 10, 4650 (2010).

    Article  Google Scholar 

  22. S. Suresh, S. Gunasekaran, and S. Srinivasan, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 138, 447 (2015).

    Article  Google Scholar 

  23. A. Lust, C.J. Strachan, P. Veski, J. Aaltonen, J. Heinämäki, J. Yliruusi, and K. Kogermann, Int. J. Pharm. 486, 306 (2015).

    Article  Google Scholar 

  24. A. Bertoluzza, M. Rossi, P. Taddei, E. Redenti, M. Zanol, and P. Ventura, J. Mol. Struct. 480, 535 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Gautam R. Desiraju and Dr. M.S Bobji from Indian Institute of Science Bangalore, for providing laboratory felicities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Praveena Manimunda or Manish Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimunda, P., Hintsala, E., Asif, S. et al. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy. JOM 69, 57–63 (2017). https://doi.org/10.1007/s11837-016-2169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2169-6

Keywords

Navigation