Skip to main content
Log in

Optimization of Binder Jetting Using Taguchi Method

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Among several additive manufacturing (AM) methods, binder-jetting has undergone a recent advancement in its ability to process metal powders through selective deposition of binders on a powder bed followed by curing, sintering, and infiltration. This study analyzes the impact of various process parameters in binder jetting on mechanical properties of sintered AM metal parts. The Taguchi optimization method has been employed to determine the optimum AM parameters to improve transverse rupture strength (TRS), specifically: binder saturation, layer thickness, roll speed, and feed-to-powder ratio. The effects of the selected process parameters on the TRS performance of sintered SS 316L samples are studied with the American Society of Testing Materials (ASTM) standard test method. It was found that binder saturation and feed-to-powder ratio were the most critical parameters, which reflects the strong influence of binder powder interaction and density of powder bed on resulting mechanical properties. This article serves as an aid in understanding the optimum process parameters for binder jetting of SS 316L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies (2011), pp. 1–3.

  2. T.T. Wohlers, Wohlers Report 2015. Wohlers Associates 2015, 23 (2015).

    Google Scholar 

  3. A.M. Knudson, I.A. Popernack, and A. Schuler, Int. J. Metall. Cast. 10, 111 (2016).

    Google Scholar 

  4. H. Ludwig, and T. Joel, Wear Properties of 3D Printed Stainless Steel-Bronze Composite (Minnesota State University—Mankato, Undergraduate Research Symposium, 2015), http://cornerstone.lib.mnsu.edu/urs/2015/poster_session_A/2/. Accessed 20 October 2016.

  5. D. Snelling, Q. Li, N. Meisel, C.B. Williams, R.C. Batra, and A.P. Druschitz, Adv. Eng. Mater. 17, 923 (2015).

    Article  Google Scholar 

  6. I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed. (New York: Springer, 2015), pp. 205–218.

    Book  Google Scholar 

  7. H. Chen and Y.F. Zhao, Rapid Prototyp. J. 22, 527 (2016).

    Article  Google Scholar 

  8. Y. Tang, Y. Zhou, T. Hoff, M. Garon, and Y.F. Zhao, Mater. Sci. Technol. 32, 648 (2016).

    Article  Google Scholar 

  9. D.S.D. Uduwage, Binder Jet Additive Manufacturing of Stainless Steel-Hydroxyapatite Bio-composite (Minnesota State University—Mankato, Masters Thesis, 2015), http://cornerstone.lib.mnsu.edu/etds/432/. Accessed 15 September 2016.

  10. M. Vaezi and C.K. Chua, Int. J. Adv. Manuf. Technol. 53, 275 (2010).

    Article  Google Scholar 

  11. S. Meteyer, X. Xu, N. Perry, and Y.F. Zhao, Proc. CIRP. 15, 19 (2014).

    Article  Google Scholar 

  12. A.W. Yao and Y.C. Tseng, Rapid Prototyp. J. 8, 180 (2002).

    Article  Google Scholar 

  13. J. Suwanprateeb, F. Thammarakcharoen, K. Wasoontararat, and W. Suvannapruk, Rapid Prototyp. J. 18, 490 (2012).

    Article  Google Scholar 

  14. T.J. Hsu and H.W. Lai, J. Chin. Inst. Eng. 33, 121 (2010).

    Article  Google Scholar 

  15. J. Suwanprateeb, Polym. Int. 55, 57 (2006).

    Article  Google Scholar 

  16. M. Chhabra and R. Singh, Rapid Prototyp. J. 18, 458 (2012).

    Article  Google Scholar 

  17. S.J. Li and S. Cao, Adv. Mater. Res. 399, 1639 (2012).

    Google Scholar 

  18. M. Kurt, E. Bagci, and Y. Kaynak, Int. J. Adv. Manuf. Technol. 40, 458 (2009).

    Article  Google Scholar 

  19. S.J. Kim, K.S. Kim, and H. Jang, J. Mater. Process. Technol. 136, 202 (2003).

    Article  Google Scholar 

  20. H. Oktem, E. Tuncay, and I. Uzman, Mater. Des. 28, 1271 (2007).

    Article  Google Scholar 

  21. G.P. Syrcos, J. Mater. Process. Technol. 135, 68 (2003).

    Article  Google Scholar 

  22. K.S. Lakshmi and G. Arumaikkannu, Adv. Mater. Res. 845, 862 (2014).

    Article  Google Scholar 

  23. I. Flores, E. Coatanea, M. Salmi, and J. Tuomi, Robust Design Principles to Evaluate Additive Manufacturing Capabilities (1st International Symposium on Robust Design, 2014), http://proceedings.dtu.dk/fedora/repository/dtu:2156/OBJ/S07_OralSession2_Flores.pdf. Accessed 17 September 2016.

  24. J. Clayton, Met. Powder Rep. 69, 14 (2014).

    Article  Google Scholar 

  25. G. Manogharan, M. Kioko, and C. Linkous, J. Met. Mater. Miner. 67, 660 (2015).

    Article  Google Scholar 

  26. H. Miyanaji, S. Zhang, A. Lassell, A. Zandinejad, and L. Yang, J. Met. Mater. Miner. 68, 831 (2016).

    Article  Google Scholar 

  27. E.S. Almaghariz, B.P. Conner, L. Lenner, R. Gullapalli, G.P. Manogharan, B. Lamoncha, and M. Fang, Int. J. Metalcast. 10, 240 (2016).

    Article  Google Scholar 

  28. L. Rabinskiy, A. Ripetsky, S. Sitnikov, Y. Solyaev, and R. Kahramanov, IOP Mater. Sci. Eng. 140, 012023 (2016).

    Google Scholar 

  29. ASTM B 528-99, Standard Test Method for Transverse Rupture Strength of Metal Powder Specimens (2000), pp. 1–4.

  30. R.K. Roy, A Primer on the Taguchi Method, 2nd ed. (Dearbon, MI: Society of Manufacturing Engineers, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guha Manogharan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, S., Manogharan, G. Optimization of Binder Jetting Using Taguchi Method. JOM 69, 491–497 (2017). https://doi.org/10.1007/s11837-016-2231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2231-4

Keywords

Navigation